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Abstract: Second-rank tensor properties such as the overall rotational diffusion tensor and the alignment tensor
can be determined by NMR methods measuring orientation of interatomic vectors. Here we examine the effect
of incomplete sampling of orientation space by interatomic vectors in a molecule on determination of a second-
rank tensor. We have developed a quantitative approach to determine (1) how well orientation space is sampled
by a particular protein or substructure, (2) to what extent this particular distribution of bond vectors samples
the various components of a second-rank tensor and, (3) the ability of this distribution of bond vectors to
completely characterize the tensor. This approach is generally applicable to any second-rank tensor property
whose determination relies on the sampling of the angular space by the structure or substructure. The theory
permits assessment of the expected degree of accuracy of tensor determination using a selected set of interatomic
vectors (e.g., NH or @&H%, etc), for a given molecular structure. The sampling properties of real proteins are
analyzed using a database of 1736 structures, representing all experimentally determined protein folds. This
theoretical approach is applied to the rotational diffusion and alignment tensors obtained from nuclear magnetic
resonance data for several systems, including ubiquitinf&RK PH domain. Finally, the proposed sampling
characteristics are related to the accuracy of the determination of the rotational diffusion tensor from spin-
relaxation data, as an example of an unknown second-rank tensor. Knowing the accuracy of the tensor quantity
derived from experimental data assists in optimizing experimental design.

Introduction
Recently, significant attention has been paid to the determi-

nation of several second-rank tensor properties from liquid-state

NMR. These include measurement of the alignment tensor from
residual dipolar coupling information in oriented systénisis

well as the magnitude and orientation of the rotational diffusion
tensor from relaxation data in isotropic solutibi. These
measurements provide valuable structural information in the
form of “long-range”, orientational constraif?s'2 not available
from NOE measurements and are likely to improve significantly
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the accuracy of protein structures determined in solution.
Determination of the overall tensor properties, like the alignment
tensor or the rotational diffusion tensor, is critical for precise
and accurate derivation of orientational constraints for structure
determination. While these tensors can be directly determined
from experimental measurements based on protein strdéitne,
their determination in the absence of structural information is
less straightforward. Approaches were suggested to estimate the
largest principal value and the rhombicity of these tensors,
assuming uniform orientational distribution for the measured
internuclear vectorg A structure refinement protocol suggested
recently* avoids the necessity of prior knowledge of the
orientation of alignment tensor; however, the derivation of
intervector angles from residual dipolar couplings in this
approach requires knowledge of the principal values of the
tensor. An attractive possibility of deriving “low-resolution”
orientational constraints without explicit determination of the
alignment tensor was also suggesteshd could be used as a
starting step in structure determination. However, structure
refinement to a high level of accuracy and precision will rely
on accurate determination of the alignment tensor.
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The degree to which sets of tensors, either solely, or in tion space. This theory allows, for a given protein structure, an
combination with small sets of internuclear scalars such as assessment of the expected degree of accuracy using a selected
NOEs, can be used for structure determination remains ill- set of vectors (e.g., NH or®i® etc). This provides guidelines
determined$1”Nevertheless, these measurements of larger-scalefor the design of experimental approaches that provide the best
hydrodynamic properties have provided insight into the relative possible accuracy. We discuss its implications on the determi-

orientation of multiple domains in weakly interacting multido-
main system§;18-20 where interdomain NOE information is
scarce, or time-averaged.

nation of second-rank tensor properties in solution or, con-
versely, the characterization of the structure of a particular
protein given a set of measurements of certain second-rank

The approaches mentioned above are based on measurementensor properties in solution. Although the discussion here is
of orientation-dependent characteristics for a set of interatomic focused mostly on the overall rotational diffusion of protein
vectors in a molecule. Two issues need to be addressed for anolecules in solution and the characterization of the alignment
critical assessment of the accuracy of these analyses: (1) howtensor for proteins in liquid-crystalline media, the results are
well do the results of such analyses fit the available experimental applicable to any overall second-rank tensor quantity, accessible
data and (2) how well can the tensor quantities of interest for by various orientation-dependent measurements, not only NMR.
a particular molecule or substructure be determined with the As a particular example, let us consider the determination of
finite set of interatomic vector orientations available. Approaches the overall rotational diffusion tensor from heteronuclear
to the former have been suggesté@?'The second issue, which  relaxation data. The general procedure followed in this case
is less explored, arises because only a limited set of vectors isinvolves the determination of &/T, ratio at a given field for
available for analysis in any protein or substructure. The derived a set of backbon®NH-56890r 13C*He-vectors® The parameters
tensor values could then depend on the measured set ofcharacterizing the diffusion tensor can then be obtained by
interatomic vectors, as illustrated in ref 6 for the rotational minimization of a target function incorporating these ratios and
diffusion tensor determined from the NH- andH*-vectors, those calculated from an available X-ray or NMR structure of
used separately or grouped. It is important to develop a measurethe protein. In reality, a limited set of data is available for the
of how well the various components of the tensor properties analysis, since not all the atoms are available for the experi-
can be determined from experimental measurements for amental observation and current experimental approaches are
specific protein structure. In other words, how far is it possible limited to pairs of bonded nuclei in the backbon®NH and
to determine accurately the magnitude and orientation of a given13C*H«.6 In addition, loops and the termini are usually excluded
second-rank interaction from a finite set of interatomic vectors? from this relaxation analysis because their structural features
This analysis could also help select a proper subset of are ill-defined on the relevant time scale. In addition to these
interatomic vectors to provide optimal sampling of the desired experimental considerations, the limited size of the protein or
characteristics and, therefore, could serve as a guide forsubstructure, and its limited sampling by any internuclear pair,
experimental design in these kinds of studies. restrict the ultimate accuracy of any tensor determination.

When an infinite number of uniformly oriented vectors is
available, then obviously all directions are represented equally, Theory
and the quality of a determined tensor is independent of the
orlentf';ltlon of its prlnCIpa}I axes. Re‘?" proteins n actual .NMR unspecified second-rank tens@, determined by experimental mea-
experiments, however, dlﬁer from'thls hypthetlcaI ca'se'ln.two surements for a selected set of interatomic vectors. In the following
ways: (a) the number of available interatomic vectors is limited, sections, this theory will be applied to two particular cases: (a) the
both by the finite number of atom pairs in a protein and by the getermination of the overall rotational diffusion tensor of a protein in
type of atoms/nuclei observable in a particular experiment, and solution from NMR relaxation measuremet&° and (b) the deter-

(b) the orientational distribution of the available vectors is not mination of the alignment tensor of the molecule in an ordered medium
necessarily uniform. The latter condition, which reflects the from residual dipolar couplings?

nonuniform character of a protein structure, is an essential Both the rotational diffusion and alignment tensors transform as
structural feature in a folded protein in contrast to a random second rank tensors and thus have the same properties under rotation.
polymer coil. Consider, for example, ashelix, where all the To understand the transfo_rmation properties of these tensors, we m_ake
backbone NH-vectors are aligned nearly parallel to the helix use of the fact that an arbitrary rank-2 tensor can be decomposed into
axis. If this set of vectors is the oniy set used for the a scalar (rank 0) which corresponds to the trace of the tensor, a pseudo-

det inati f d K t " h th vector (rank 1) which represents the anti-symmetric part of the tensor,
etermination Of a second-rank tensor property, such as e,y 5 yraceless tensor of rank 2. The rank 1 part is zero for both

alignment tensor or the rotational diffusion tensor, then the gymmetric tensors considered here, while the rank 0 part, which is
principal axis of the tensor in question, aligned parallel to the girection independent, equalsfTr[D] (hence has to be determined)
helix axis, would be well sampled by the vector set, whereas in the case of the rotational diffusion tensor and is zero in the case of
the axes orthogonal to it would be essentially undetermined. the (traceless) alignment tensor. Therefore, the diffusion tensor is

In this work, we present a theoretical framework to assess characterized by three independent eigenvalues and three orthogonal
the degree to which a protein or substructure samples conforma-€igenvectors (or six independent elements in an arbitrary coordinate
system). The alignment tensor or the other hand, has only two
independent eigenvalues and three orthogonal eigenvectors (altogether
five independent elements in an arbitrary coordinate system). The
spectral manifestation of the alignment tensor is the residual dipolar
coupling. The spectral manifestation of the rotational diffusion tensor
can be represented by an effective diffusion constant for each bond
vector. For small anisotropies, this can be expressed in the same form
as the residual dipolar couplifig(compare, for example, eq 13 in ref
6 and eq 1 in ref 21).

Assume we have at hand a set of unit vectors denoting the various
interatomic vectors of a particular protein in an arbitrary reference
frame. In the case of heteronuclear NMR relaxation measurements, this

The theory is developed here for the general case of an arbitrary,
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is typically a set of the backbone NH-bond vectors. In the case of _ 2 ) , 1 )

residual dipolar coupling measurements, these are typically a much= == Z Q== z ()" =-3 z ff=1)=

larger set of vectors, comprising the NH &, C'N, and C-C# bond 3£y i=Xy.z 2 %y

vectors and G1.2%22The order tensor formalism, introduced by S&pe

to represent orientational order in a uniaxial liquid-crystalline medium,

can be applied to this system to represent the sampling of the

orientational degrees of freedom along three Cartesian axes. The generalized sampling parameter quantifies the distribution of vector
The Sampling Tensor Formalism.For a given a set of unit vectors,  orientations on a scale from 0 to 1. For a uniform distribution of vectors,

a sampling tensoK?, which is a traceless, symmetric tensor of rank 2 = = 0, and this represents an optimal sampling of angular sfiee.

}[(3f — 1%+ 3¢, — )3 (4)
4 z y X

with five independent elements, can be defined as 1 if all the vectors are aligned along one direction, representing the
worst possible sampling of angular space.
3= 6”- Average ConstantD,,. What are the possible implications of this
i = 2 (1) sampling on the determination of a second-rank tensor quantity such

as the rotational diffusion tensor or the alignment tensor? It is quite
clear that, in the case where tBetensor frame and the frame of best
sampling are collinear, the principal element of the tensor which has
delta. There is an obvious similarity of tl tensor, which reflects the Iargest_number of vectors aligned parallel to it is _sa_mpled the best
statistical, time-independent sampling, to the more conventional order and that with the_ least ”“”.“ber of vgctors paraliel to it is sampled the
parameter tensa®, which reflects time-dependent fluctuations. The worst (cf. the helical par_adlgm ment_loned_ above). In the general case,
the accuracy of determination of orientation may not be so apparent,

brackets denote averaging over all the vectors in the ensemble. Thebecause the data from which the tensor quantity is extracted usuall
sampling tensor can be diagonalized to yield the principal axis frame ) - . d Y - - Y
have highly nonlinear dependencies on the vector orientations. Evi-

that corresponds to the direction of best sampling. The best Sampleddently the best possible scenario is a uniform distribution of vectors
frame is related to the original frame by a rotatiefy,0,y) whereg, In the general case, the principal axes of the terBoare not

6, andy are the Euler angles relating the two frames. In the principal . - L .

axis frame of the sampling tensor, the fraction of vectors oriented along necessarily ‘?‘"gned alqng the best-sampled dlrecpons, as deterr_nlned

the three principal directions are given by b_y th_e sgmpllng tensor |ntr0duced above. To quantify how well agiven
distribution samples the various elements of the tensor of intddest,

we define an average constabt,, which in an arbitrary frame is

wherer; is the projection of a given unit vectoron the axis where
i,j =X,Yy, Z (an arbitrary reference frame) ang is the Kronecker

2Q,+1
f,=0°C= IT orinversely, Q = g(fi - %) ) represented 15§
1 2

wherei = x, y, zare the principal axes ard; are the principal values Day = gTr[D] +3 N z ;D ®)

(ordered a2, = Q, = Q, thus,f, > f, = f,) of the sampling tensdt. W=xy.z

Note that This can be written in explicit form as

hfy+fh=1 @) D,,=D,+ FD,,+ FD,,+ 23yD,, + 232D,, +

2lyZD,, (6)

In the case of a uniform distribution of vectoi®, is the null tensor
and® f, = f, = f, = 5. When all the vectors are oriented along the
principal z-axis of the sampling tensor, thé®, = Q, = -1/, andQ,
=1, andfy = f, = 0, andf, = 1. In general, deviations of the principal
values, Q;, of the sampling tensor from zero, and that of the
correspondingf; values from?/s, reflect deviation from a uniform
distribution of the vectors.

Generalized Sampling ParameterWe define a generalized sam-
pling parameteE (in a manner similar to the generalized squared order
parametéf used in spin-relaxation analysis) given?by

This has the same form as the effective diffusion constant derived
previously*8 In the case of a uniform distribution, all parts of the tensor
are sampled equally well, anda, = Y5Tr[D] = Dis, Which is the
isotropic value oD.

The value ofDay, quantifies how well the overall tensor is sampled.
To quantify how well each principal component of the tensor is defined
by a given set of vectors, we may rewrite eq 5 in the principal axis
frame of the sampling tensor and utilize eq 2 to obtain

(22) Wang, Y.; Marquardt, J.; Wingfield, P.; Stahl, S.; Lee-Huang, S; D,= D,D; ()
Torchia, D.; Bax, A.J. Am. Chem. S0d.998 120, 7385-7386. =Yz
(23) Saupe, AZ. Naturforsch.1964 19a 161-171.

(24) In the following, the principal values of the tensors will be designated |, 1o o — { Dy, Dy, Py} is a three-component vector which provides
by a single subscript.

(25) This is also the case if all of the vectors are equally distributed & Measure of how well each principal compon@(= Dy, Dy,, Dz),*
along any three orthogonal axes, which for the analysis used here is Of the tensor is sampled
indistinguishable from an uniform distribution. Both cases are referred to
subsequently in the text as “uniformly distributed”. Note that this set of O, =f12+fm+fn? (8)
three mutually orthogonal groups of vectors could be reduced to only three toxn oy z1
vectors, the simplest case being a set of three unit vedtd@s}, {010, . . . . . .
and{ 001}, since from the point of view of orientational sampling all parallel  and i, m, n) are the direction cosines that determine orientation of
vectors are equivalent (assuming noiseless measurements). From the pointhei-th principal axis of théd-tensor { = Xy, Ya, Zs) With respect to the
of view of orientational sampling, this set of vectors fully and equally principal axesX, y, 2) of the sampling tensor frame.
represents all three orthogonal orientations and therefore is necessary |n the case of a uniform distributionp; = Y/ for all principal

(although it might not be sufficient) for full characterization of the orientation components of the tensBr, independent of orientation of the principal

of aD-tensor. However, in contrast to a uniform distribution (which implies In th t ext t I ; i d llel
substantial number of vectors), this set provides only three independent @X€S- N (€ MOSt €xtreme counter case, all vectors are aligned paralle

observables, and is then insufficient for full characterization of a rank-2 t0 one axis as in NH-bonds in thehelix, and the sampling db; is
tensor, which in general contains six (five in the case of a traceless tensorymaximal @; = 1) when the correspondinigth principal axis of the

independent components. A set of at least six (diffusion tensor) or five tensor is parallel to the helix axis, and minima (= 0) when it is
(alignment tensor) noncollinear and nonplanar vectors is required for a full

characterization of a rank-2 tensor. (28) Salvatore, B.; Ghose, R.; Prestegard]).JAm. Chem. Sod.996
(26) Lipari, G.; Szabo, AJ. Am. Chem. Sod.982 104, 4559-4570. 118 4001-4008.
(27) Sass, J.; Cordier, F.; Hoffmann, A.; Rogowski, M.; Cousin, A.; (29) These principal values are defined in ix¢ensor principal frame,
Omichinski, J. G.; Laven, H.; Grzesiek, Sl. Am. Chem. Sod.999 121, {Xd, Yo, zd}, and ordered a®,| > |Dy| = |Dy. In the following, the subscript

2047-2055. d is omitted, where possible, amyj always refers to this principal frame.
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Figure 1. Geometrical representation of sampling fractidi)sl(oci for the allowed positions in thig, f,, f;} -space for the geometrical representation

of various sets of unit vectors. (a) the orientation and 3D position of the allowed triangle, according to eq 3. (b) Two-dimensional parametrization
of the triangle plane using the generalized coordinftg§}, eqs 14-15, representing the rhombic and axial components of the sampling tensor.
Ellipses and arcs represent contour lines corresponding to various values (indicated by the numbers) of the generalized sampling=parameter,
according to eq 16. (c) The same plane representation as in (b), with the contour lines indicating various levels of the lower boundary for the quality
factor, Amin, @s discussed in the text, eq 19. Solid lines repreagnt for an axially symmetrid-tensor, and the same levels in the presence of
rhombic components witR = 0.2 are shown with dotted lines. The shaded area is the minimal representation triangle (see text), where all allowed
points are folded in, under symmetry transformations caused by ordering of the principal values of the sampling tensor. The origin, indicated by
xin (a), (b), and (c), corresponds to the case of a uniform samp}ing:= 0. The three sides of the allowed triangle in (b, c) are described by the
following equations: ¢ + 1.57 = 0.5; ¢ — 1.57 = 0.5; and¢ = —0.25. Also indicated in ¢ are four points representing the various sets of the
backbone NH-vectors in th@ARK PH domain: for all core amides (solid square), only for théelix (circle), and only fogs-strands (triangle),

and in ubiquitin (open square).

orthogonal to the helix. If the principal axis of the tensor makes an value of the quality factor is independent of the principal valueB.of

angle of 54.7 with the helix axis, thenb; = /5 in this case. In the case of an axially symmetric distribution of vector orientations,
Generalized Quality Factor. We define a quality factor which eq 12 can be further simplified to

reflects how efficiently a given structure samples all elements of the

tensor of interest, as follows

A=1— %|(3Z —1)(3cod 6 — 1) (13)
Dav - Diso

D, — Diso

A

9)

The quality factor is maximalA = 1, when all three orientations are
sampled equallyf{ = f, = f, = /3), independent of the orientation of
the tensoD and of the degree of rhombicity of the latter. It also equals
1 in the case of an axially symmetric tengdyrif its z-axis is oriented

at the “magic” angle (547 with respect to all three principal axes of
the sampling tensor, independent of th§:f, ratio. In the case where
all of the vectors are oriented along the i-th principal axis of the
diffusion tensor @z), we obtain

Equation 9 is similar in form to an expressi®mepresenting the
orientational order in lipid bilayers\ has a maximum value of 1 for

a uniform distribution, which represents the optimal sampling, and a
value of 0 when all the vectors are oriented along #fexis of the
principal frame of the tensdd. Using eqs 7 and 8, the expression for
the quality factor can be explicitly derived as:

_|@ep-D;-D)

A=1- %|(3fz ~1)(3c08 0 — 1)+ 3(f, — f,)sir 0 cos 25 —
(20,-D,-D)

3RA®D| (10)

A

=l—:—2L|1—3RA<I)|

ijzz

Here{¢, 0, v} are the Euler angles describing the orientation of the
principal axis frame of th®-tensor with respect to the sampling tensor
frame.R = [Dy — DJ/[D, — (Dx + Dy)/2] is the degree of rhombicity

of the D-tensor. Note that the first two terms in eq 10 are independent
of the actual values of the principal component®ofThe last term in

which reduces td/, for an axially symmetric diffusion tensor (where
Di = Dj = D[; Dz = D||).
Given the principal values and orientation of beeensor, eqs 10
13 (see also eqgs 17, 18 below) provide an estimate of the degree of
accuracy of the derived tensor, for a particular set of vectors used for

eq 10 represents the effect of rhombicity of the tensor, and has the the determination. As outlined in the following sections, these equations

following angular dependence:
AD =D, — D, =3, — 1)sif 6 -
=d, yd—2( ,— D)si cos 2
(1, - t)[cos 20 — ¢) sin“g +cos 2 + cp)cos“g (11)

For an axially symmetric distribution of the vectors, that is, when

fy, the A® term is not generally zero except in the case of a uniform
distribution. For an axially symmetric tensDr the rhombicityR = 0,
and the expression for the quality factor, eq 10, reduces to

A=1- %1|(3fz — 1)(3c08 0 — 1)+ 3(f, — f)sir’ 0 cos 2| (12)

Inspection of eq 12 reveals that for an axially symmelritensor, the

(30) Sanders, C.; Hare, B.; Howard, K.; PrestegarBrdgr. Nucl. Magn.
Reson. Spectros¢994 26, 421—444.

also allow an assessment of the available accuracy of tensor determi-
nation for any given set of vectors, without prior knowledge of the
tensor.

Geometric Representation of the Sampling Characteristics of a
Vector Set. Equation 2 provides the basis for a useful and simple
geometric representation of the distribution of vector orientations, as
it allows one to represent each ensemble of unit vectors by a single
point (or a single three-component vectdrwith the coordinates
{fx, fy, f} in a general three-dimensional space, spanned by all values
of f.

Allowed Plane.According to eq 3, only two of the three components
of af-vector characterizing the orientational distribution are independent.
The locus of all allowed points in thid,, f,, f}-space is then reduced
to a plane triangle with the vertexesdt,0,@, {0,1,3, and{0,0,3,
Figure 1a. Since the actual dimensionality of the locus is two, it is
convenient to introduce a two-dimensional set of generalized coordinates
{n, &} to parametrize the allowed plane and thus provide a direct
characterization of the location of each point in this plane. We use the
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following set of generalized coordinates: eqg 17. Contours can be plotted for any given valuddfigure 1c) so
that those points, within the area surrounded by the contour, have values
n= Z_L(f —f) of the quality factor greater thar independenbf orientation and
ARS principal values of thé®-tensor. In contrast, for those points outside a

1 given contour, the expected values of the quality factor could be greater,
&==(3f,— 1) (14) equal to, or less than, depending on the orientation of tietensor
4
with respect to the sampling tensor frame. This leads to the concept of
where  and ¢ range from—0.5 to 0.5 and from—0.25 to 0.5, a lower boundary value\min. Each poin{z,¢} in the allowed plane
respectively (Figure 1b,c). The allowed space is completely spanned S characterized t_)y a value Afyint Whlch_represents _the lowest possible
by 7 and, and can be further reduced when the fractions are ordered value of the quality factor over all possible orientations ofEh&ensor;

asf, = f, = f, see below. Amin represents the “worst-case” estimate for the quality factor. The
It is worth mentioning that the generalized coordinatesnd 7, actualhv_alue of the quality fa_ctc_)r depends on the orier;ztatio_n and
introduced here, have certain physical meaning: they directly representtnombicity of theD-tensor and is in the rang&min = A =< 15 This
the axial and rhombic components of the sampling tensor: geometric representation &fnin-contours, defining areas of guaranteed
high A values,A = Ami, (Figure 1c), will help in experimental design,
1 1 with the goal of selecting a vector set such that its representation on
C=27Q,— (R, + Q) ; ; o
3%z 2\ Y the allowed plane is as close as possible to the origin.

1 In the above discussion we assumed that the rhombicity effect is

n= é(Qy -Q) (15) nggllglble. Slgnlflcant rhombicity Wlll perturl? the clear geometrical
picture outlined above. The effect is proportionaRand, therefore,

is small for small degrees of rhombicity of tlietensor (Figure 1c).
As can be seen from eq 18, for certain orientations of DhEnsor
frame, this effect could be negligible even for substantial valudz of
It is also worth noticing that the rhombicity term in eq 17 is proportional
to the distance from the origin in the allowed plane. Therefore, its
f absolute contribution is expected to be small in the target areasq(

These coordinates directly characterize the anisotropy and rhombicity
of a given distribution of vector orientations and thus provide full
characterization of the sampling tensor for a given set of vectors.
Map of the Generalized Sampling Parameter.In terms of the
3-dimensional space of the coordina{ds f,, f,}, each value of the
generalized sampling parametércan be represented by a sphere o

radius 4/(22+1)/3 centered at the origin and described by the & f:lqsg 0 ’t’he prlgln in the allowed pla.ne, thatis, thos.e witere 1.
equation: f2 + f,2 + 2 = (28 + 1)/3, following from eq 4. The loci Minimal” Triangle Area. The ordering of the principal values of

of the allowedf-vectors are then determined by the intersections of the sampling tensor

this sphere with the allowed triangle, which result in concentric circles

(for £ < 0.25) or arcs¥ > 0.25) (Figure 1b). The constaBtiines, in Q,zQ = Q
the generalized coordinate system, are described by

_ ) ) introduces symmetry restrictioffavhich further reduces the allowed
E=45+3y (16) representation region to the “minimal triangle” (shaded in Figure 1c)
described by the following conditions) > 0, ¢ = »/2 and¢ + 1.5

< 0.5. In this area, the minimal possible value'oftaking into account

all possible orientations of thB-tensor) is given by the following
expression, valid fofR| < 2:34

Mapping of the Quality Factor. In the generalized coordinate
system, the quality factor is given by

A=l—|€(3co§0—1)—gnsin20c052p—3RA<I>\

17) Apn=1— ma){ 2C+ 1.57‘R‘, ¢+ 157+ %" R‘(@ - 0.&7)} (19)

with the following angular dependence of the rhombic term:
This allows a straightforward estimation of the lower bound for the

AD = % sir? 6 cos - g COS 2¢) — @) sin4g + quality factor for a given set of vectors, without any preexisting
P knowledge of the orientation of tHe-tensor. The lower bound for the
cos 2 + ¢) cos' 5] (18) quality factor in the presence of rhombic components bf@nsor is
lower than that for an axially symmetriD-tensor: Amin = 1 —

As pointed out above, egs 17 and 18 can be used to assess the accura&)a){ Z_C’C + 1.5} )

of determination for a derived tensor value, given components of the ~ Derived Tensor Accuracy as a Function ofA. To assess the
sampling tensor. These equations also allow mapping of the quality relation between the accuracy of the estimated tensor quantity and the
factor establishing the relationship between sampling characteristics quality factor, we determined the overall rotational diffusion tensor
of vector sets and the available levels of accuracy of tensor determi- Using synthetic sets of relaxation data which inclTgeT,, and NOEs

nation. The following analysis assumes that the rhombic component 9enerated from a specific distribution of vector orientations. Random
in eq 17 is negligible, for simplicity. errors of 2% were introduced into thg, T,, and NOE data sets. To

For a particular value of the quality factor and a given relative duantitate the errors in the estimated diffusion tensor, we define two

orientation of sampling anB-tensors, the corresponding valuespof ~ duantitieseq and €5, representing the relative errors in the principal
and & can be found by solving eq 17. Since the orientation of the Values and in the orientation of the diffusion tensor, respectively. These
D-tensor is not known a priori, we need to find the point locations in are defined as

the allowed plane corresponding to a given valuadbr anarbitrary
relative orientation of the two tensoi®,and the sampling tensor. The (31) It can be shown that, given the rhombicity facRyreach point in

obvious limiting cases are (i) = 0 when the solutions to eq 17 exist 1% H05S PAne B CAEciorand by & St b Bah. | e orientation
only for & = 0 or§ = 90°, ¢ = 0, 90" and are located at the vertices ¢ -'5 tansor such that = 1. This orientation is characterized by the

of the triangle, and (i)A = 1, when the solutions (in terms ¢fC) following Euler angles:¢p = 45°, = 54.7, andy = —0.5 tan}{2¢/

exist for all values of 6,9} and are spread over the whole area of the (5v/3)] (if R = 0).

triangle. The case of an arbitrary is more complex. (33) This o_rdering (hence symmetry restrictiqns) results frpm_insensitivity
A-Contours and the Lower Boundary Value, Anin, of the Quality of the sampling tensor to the directionality (sign) of the principal axes.

(34) A full expression for all values dR is

,§(1+%

Factor. Since the values of the trigonometric functions in eq 17 are
limited, for any given nonzero value @f there is always a region in

the allowed plane centered at the origin, where there is no solution to Amin=1- ma>{ 28+ 1'5’7’R

RD + 1.57‘1 - %’RH}
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1 Dact_ Dg:al 2
I |
€q= 100 o (20)
i:x,y,z3 D?Ct
T R o' ,Rcak:y, nT
Eazloc{l_ racaR e, VRGN 5y

where D* and DI are the actual and calculated values of the
principal elements of the tensoR* and Rea° are the actual and
calculated rotation matrices relating the molecular frame to the principal
axis frame of the diffusion tensor and the superscfipépresents the
matrix transpose. Bothy ande, are zero for an exact match between
the actual and estimated tensors, whkiléas a maximal value of 100

when the actual and calculated orientations are orthogonal to each other.
Absolute values are used in the evaluation of the trace in eq 21 because

the signs of thék’s are not experimentally determined. A few examples
of the relationship between the quality factdrand the errorgq and

€a are shown in Figure 4. All calculations were performed using the
guadratic form of the diffusion tens@with the tensor calculated from
the relaxation data using singular value decompositi(@hose et al.,

in preparation).

Results and Discussion

In this section, we consider several applications of the
theoretical approach developed above.

What Are the Sampling Properties of Known Protein
Structures? To assess how various sets of interatomic vectors
are sampled in real proteins, we performed a survey using
structures from the Protein Data Bank. A set of protein structures
was selected representing the whole variety of protein folds
currently available. The selection criteria &fdhe proteins are

J. Am. Chem. Soc., Vol. 122, No. 43, 200845
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Figure 2. Sampling characteristics of the proteins represented in the
PDB survey: the distributions of the representing points in the allowed
plane, corresponding to sampling of the orientation space by (a) NH-,
(b) NC*, (c) C*H*-, (d) CC'-, (e) CO-, and (f) CiNi+s1-vectors, in

the representative set of 1736 protein structures from Protein Data Base
(see text). Shown in panels (g), (h), and (i) are the corresponding

at least 30 residues long, have less than 40% sequence identitglistributions for the grouped sets of vectdiiH, C*H}, {NC*, C*H},

or more than 30% or 30 residues length difference from other
set members, are either X-ray structures8tA resolution or

NMR structures. The set contained 1736 protein structures, of
which 879 were single proteins and 857 were single chains in

and{NH, CO}, respectively. Note that the generalized coordingtes
and¢ characterize the rhombic and axial components of the orientational
distribution for a given set of vectors, eq 15. Every protein structure
from the representative set is represented on each panel by a single
dot, with the coordinatef;,¢} calculated for the specified set of vectors

multisubunit proteins. Of these analyzed structures, 449 (26%) according to egs 1, 2, 14, 15. Note that the ordering of the principal
were NMR structures and the rest were X-ray structures components of the sampling tensor was applied; therefore, all points
(Supporting Information). In the latter cases, hydrogen atoms are folded into the minimal triangle, indicated in Figure 1c. The dashed
at the amide andx positions were added using standard line is the Amin = 0.7 contour. The percentage of protein structures
algorithms®” The N- and C-terminal residues were not included. with 0.7 < Amin < 1is (a) 85.7, (b) 99.8, (c) 97.8, (d) 100.0, (e) 87.6,
Sampling tensors were calculated for each structure for the (f) 99.0, (9) 96.9, (h) 100, and (i) 86.9%.

following bond vectors in the protein backbone: NH, N@nd
CeC' within the same residue and;R;;, in the same peptide
plane { + 1), as well as for the @1* bonds. The distribution

Table 1. Statistics for the Representative Set of Protein Structures

generalized sampling

of the representative points in the allowed plane is shown in parameterz quality factor, Armin
Figure 2. The statistics of the resulting distributions are presented bond vectors  68.3% level 90% level 68.3% level 90% level
in Table 1. NH <0.05 <0.13 >0.79 >0.65
The NH-vectors present the least uniformly distributed sets NC* <0.01 <0.03 >0.90 >0.84
(Figure 2a). This observation holds for both the NMR- and X-ray <*C <0.01 =0.02 >0.90 >0.85
derived structures. To further verify this result, the same gaoHa jg'gg jg'(l)é ig'gg :8'%
sampling tensor analysis was applied ttO&ectors in the CiNiy <0.01 <0.03 ~0.90 ~0.84
representative set of proteins (Figure 2e). The results were very {NH, C*H} <0.03 <0.06 >0.85 >0.76
similar to those for the NH vectors, which is expected since {NH, CiNi1} <0.01 <0.02 >0.92 >0.87
the directions of the © and NH bonds belonging to the same EEEHSI\?&} ig.ggz ig.é&l ig.gg ig.gg
peptide plane are almost anti-parallel. The correlation coefficient ol vectors <0005 <001 ~0.93 ~0.89

between the distributions of the fractions of the NH- arl®-C
vectors in the analyzed protein set was 0.98, 0.98, and 0.99 for
fx, fy, andf, values, respectively. For comparison, the corre-
sponding values of the correlation coefficient betwe&d énd

(35) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes in @Cambridge University Press: New York, 1992.

(36) Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M.
Proteins1995 23, 318-326.

(37) Weiner, P. K.; Kollman, P. AJ. Comput. Chem1981,2, 287—
303.

2 The generalized sampling paramet&rand the quality factorA,
are assessed for each of the 1736 proteins in the representative PDB
set. The levels o and A corresponding to 68.3 and 90% of the
analyzed protein structures for each type of bond vectors are reported.
These correspond to a set of 1186 or of 1563 proteins, respectively.
The list of PDB structures used is available in the Supporting
Information.

CoC' were 0.43, 0.23, and 0.44. Because of their high correla-
tion, the inclusion of both NH and’'O-vectors in one data set
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Table 2. Sampling Parameters in Idealized Secondary Structural  to the rotational diffusion tensor in proteins. In the paragraphs

Elements below we discuss two specific examples, human ubiquitin and
vector set Q, Q Qy f, f, o f = the Pleckstrin homology (PH) domain of the hunaadrenergic
f-Sheet receptor kinase 13ARK1).”
NH 0.89 —0.41 —-0.48 0.93 0.06 0.01 0.80 Ubiquitin. The rotational diffusion tensor of ubiquitin has
g“CH; 8-2; _%‘581 _8-23 8-22 8-(3)‘11 8-88 8-22 principal element®; = 4.43 x 10’ s andDr= 3.82 x 107
. 01 —o0. , , , , 1 ) ) : .
(NH, C'He) 093 —045 —0.47 095 003 002 0gg S »as determined biPN relaxation (excluding those residues

{NH, C*H¢, CC%} 053 —0.14 —0.39 069 024 0.07 030 Which exhibit large-amplitude motion as well those which are
subject to conformational exchangéhose, Fushman, Cow-

NH 0.91 _Oﬁgelf(o_% 0.94 003 003 084 b.urn,.unpublishgd results). The principal axis frame of the
CeH« 0.13 0.03 —0.17 0.42 0.36 022 0.03 diffusion tensor is related to the PDB-frame (1ubq.pdb) by a
cce 0.24 —0.10 —0.14 0.49 0.27 0.24 0.06 rotationR(48°,3%,0°). The sampling tensor (including the amide
{NH, C*H<} 038 —0.17 —0.21 0.59 0.22 0.19 0.15  hackbone>NH bond vectors only) is characterized by principal
{NH, CH*, CC} 0.33 —0.14 —0.19 055 0.24 021 011  yaues given byQ, = 0.3148,Q, = —0.0736, andQ, =

\H 087 5:140-3he|i>6 44 091 004 004 076 —0.2412 withf, = 0.5432,f, = 0.2843, andx = 0.1725. The
She G 0% 0k 0% 04l 0% 07 bestsamoen rane sislan o e s trsor e
c'ce 0.34 -0.16 —0.18 0.56 0.23 0.21 0.11 R

{NH, C*He} 031 —-0.14 —0.16 0.54 024 0.22 010 the diffusion tensor plane is roughly parallel to thexis of
{NH, C*H*, CC%} 0.31 —0.15 —0.17 0.54 0.24 0.22 0.09 the sampling frame and is the best sampled, whilezthgis of

@ Each standard secondary structural element was built for 12 residuesthe diffusion tensor frame approximately corresponds taxthe

of alanine using INSIGHT (MSI), and the structure was analyzed (see @Xis of the sampling frame and is the least sampled. This is
text) for the individual axial sample components. confirmed by the values @b which are{0.5361,0.2825,0.18}4

The values off and A are 0.1084 and 0.7721, respectively.

PARK PH Domain. A similar analysis of>N relaxation data
in the case of th8ARK PH domairf (PDB code 1bak.pdb),
| which hasD; = 2.19x 10’ s andDg= 1.72 x 10’ s7%, yields
a sampling tensor characterized @y = 0.1090,2, = 0.0374,
andQ, = —0.1465 {, = 0.4060,f, = 0.3583, andx = 0.2357).
The values of= and A are given by 0.0232 and 0.9256,
respectively, implying a near-optimal sampling of both the

does not improve the sampling (Figure 2i), unlike that for other
pairs of sets of vectors. This highly nonuniform distribution of
the NH and QO bond orientations reflects the intrinsic feature
of a folded protein, where amide hydrogens and carbony
oxygens play essential roles in the hydrogen-bonding networks
of the protein fold. Hydrogen bonding requires specific spatial
and orientational arrangement in the-N--+O=C atoms38
resulting in orientational restrictions on the NH-bond. The

hydrogen-bonding patterns characteristic for the elements of the®i€ntation space and the diffusion tensor. Note that this protein
secondary structureaf and 3ghelices, f-strands, see the contains an extended (17 residues long) C-terminhglix. If

examples below) then result in the distribution of the NH bond ©NlY thea-helical residues are considered, the sampling tensor
orientations being highly nonuniform. To illustrate this, we 'S characterl_zed b2, = 0.8722,Q, = —0.4291, andy =
applied the same analysis to model structures ofidrelix, a —0.4431 {; = 0.9148,f, = 0.0473, andy = 0.0379) and the
3i-helix, and apB-strand, generated using INSIGHT (MSI). generalized sampling paramet&l;, becomes 0.761 indicating
Table 2 shows the values 6k, f; (i = x,y,d and = for NH a grossly inadequate sampling of orientational space, that is,
CeHe and CC for these structures. In the case of aielix the o-helix is insufficient to fully characterize the diffusion
the NH-vectors are highly ordered (and aligned almost parallel t€nsor of the system. Similar problems are expected in the case

to the helix axis) wittE = 0.84, whereas the®Gi“-vectors are of helical bundles. To provide a better sampling of the
more evenly distributéd with E = 0.03. The use of the &{e- orientational space, an additional set of vectors is therefore

vectors would then provide a more uniform sampling of the N€cessary. In the case of relaxation studies, this could*bi¢-C
orientational space and thus of a resulting second-rank tensor. ° Of C*C'-vectors. Although the €*- and CN-vectors are more
The situation is similar in ag-helix. In the case of-strand, difficult to study by NMR relaxation than NH-vectors, some
however, both NH and €= are highly ordered, Wit = 0.8 attempts have been made in this d!recﬁ&ﬁor thefARK PH
and 0.95, respectively. Since these sets of vectors are almosflomain considered here, a near optl.mal sampling of orlentatlonal
anti-parallel to each other, their union does not improve SPace results from the NH-vectors in fistrands. Analysis of
sampling. However, including the °C'-vectors in the set the sampling properties of the-strands yields the following

reducesE to 0.30, indicating a more uniform sampling of the Values for the principal elements of the sampling tengey=
vector space. 0.3353,Qy = —0.0244, and2, = —0.3109 {; = 0.5569,f, =

Grouping NH- and €He-vectors in proteins from the 0-3171,andx=0.1261) and the generalized sampling parameter
representative database improves the sampling, compared to th& = 0-1398. Thus, the strands, as a substructural set, provide a
NH-only dat& (Table 1, Figure 2g). Interestingly, a much better Detter sampling of orientational space than theelix does.
improvement is achieved by the union of NH- antNG: - Further, by virtue of the PH domain fold, the NH-vectors in
vectors. The optimal sampling results from a pairwise union the strands are oriented approximately orthogonal to the helix
were obtained fof C*H®, NC%}-vectors (Figure 2h). In this last ~ aXis, and therefore, a combination of the NH-vectors from the
case, none of the structures analyzed had\thg value below two sets of structural elements lowers the value=ofo the
0.85, and the correspondirigreater than 0.024. almost optimal value of 0.0232.

Rotational Diffusion Tensor from 1°N Relaxation Mea- Alignment Tensor from Residual Dipolar Coupling Mea-
surements. To illustrate the approach described above, we surements.The theoretical approach presented above can be
present a few examples which demonstrate its utility with respect applied to molecular systems oriented in dilute liquid-crystalline

- - media. For ubiquitin in the liquid-crystalline phase (5% w/v of

83; Eﬁ?;&%’riﬁ” E ?rsg[uﬁégy,ApT gﬁgs"g', ﬁ?;dgggeﬁﬁaiiﬁ; G, DMPC:DHPC in a 3:1 ratio at 304 K), the alignment tensor

Chem. Soc1999 122 1758-1761. has been found to be related to the PDB frameR(42°,35°,
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Table 3. Sampling Characteristics of the Alignment Tensor for Ubiquin in Different Liquid-Crystalline Media

mediund

alignment tensor

{A Ay AP

DMPC:DHPC= 3:1 (304 K-\’
DMPC:DHPC= 3:1 (310 K)°
DMPC:DHPC= 3:1 (313 K}’
DMPC:DHPC:A= 3:1:0.1 (310 K}°
DMPC:DHPC:C= 3:1:0.1 (310 K¥°
PM = 1.0 (313 KY’

PM = 1.9 (313 K}’

PM = 1.9; N= 50 (313 K}’

PM = 1.9; N= 50 (288 K}’

PM = 7.0; N 50 (313 K¥’

PM = 12.0; N= 350 (313 K}’

5.60,—3.60,—2.00

2.02,3.29-5.31
3.01,6.40-9.41
1.79, 2.90,-4.69
1.13,6.02-7.15
3.69,4.70-8.39
6.07, 8.48,-14.55
4.91,6.44-11.35
4.08,5.52-9.61

8.61,12.78-21.38

1.60, 4.22,-5.82

PDB framé sampling frame
{a,B.y} [deg] A° Aal { .0} [deq] { Dy, DY, D}
42.0,35.0,42.0 0.77 0.76 3.8,86.2 0.45, 0.38, 0.17
33.1, 41.3,50.7 0.78 0.77 2.6, 80.9 0.44,0.38,0.18
38.8,31.5,37.9 0.78 0.76 2.5,89.9 0.48,0.35,0.17
33.2,41.4,49.1 0.78 0.77 2.6, 80.8 0.45, 0.37,0.18
30.9, 29.9, 20.3 0.85 0.76 1.1,87.8 0.54,0.29,0.17
310.1, 128.6, 163.0 0.89 0.91 60.0, 76.8 0.22,0.51, 0.27
309.8,127.7, 160.7 0.88 0.91 60.7,77.5 0.21, 0.51, 0.27
310.3,129.1, 162.3 0.89 0.91 59.6, 76.5 0.22,0.51, 0.27
315.2,128.3,149.6 0.90 0.92 62.2,73.5 0.20, 0.52,0.28
322.4,112.2,20.0 0.95 0.95 80.0, 75.3 0.37,0.33,0.30
330.8,127.9,47.5 0.96 0.99 67.8, 62. 0.45, 0.22,0.33
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Figure 3. Dependence of the quality facto,, on the orientation
(¢, 0) of the unique axis of the alignment tensor with respect to the
sampling tensor frame for ubiquitin. The angieandé correspond to

the azimuthal and polar angles, respectively. The contour lines represen

various levels ofA calculated using eq 10. An axially symmetric

consistently higher quality factors, and in most casesy-hes
of the alignment tensor is the best-sampled axis (Table 3).
Inspection of Table 3 reveals that change in the quality factor
from 0.76 (in the DHPC:DMPC system) to 0.99 (in the purple
membrane system) is a result of a change of 69 the
orientation of the alignment tensor. In most cases the expected
error in the quality factor due to the assumption of axial
symmetry is of the order of 1% (Table 3).

Relation between the Quality FactorA and the Accuracy
of the Diffusion Tensor Determination. How accurate are
tensor values for a particular value &f? To answer this
question, the simulation approach outlined in the Theory section
was applied here to the determination of the rotational diffusion
tensor, as illustrated in Figure 4. Similar results are expected
for the accuracy of derivation of the alignment tensor from
residual dipolar couplings, because of the same functional form
as the quadratic forf¥ used here for the rotational diffusion
fensor.

Consider the simplest case of axially symmetric diffusion

alignment tensor has been assumed. Only the core residues of ubiquitife€nsor Do = 3.0 x 10’ st and Dy = 4.5 X 10" s7t which
have been included in the calculation of the sampling tensor. Also corresponds ta. = 4.76 ns and the anisotropy fact@y/
shown are the orientations of the alignment tensor experimentally D;=1.5), and an axially symmetric sampling tensor. We

observed in the DHPC:DMPC system (squafesy/*°doped DHPC:
DMPC system (circled) and the purple membrane system (triangtés).

42°), with principal value#\ = 5.6,Ay = —3.6 andA, = —2.07

simulated multiple sets of vectors with different values of the
sampling parametefz, ranging from 0.94 to 0.03 with the
values off, and thef/fy ratio in the range from 0.94 to 0.44 and
from 34.2 to 1.57, respectively. The various distributions were

An anaIySiS similar to that pl’esented before yleldS values of generated by starting with unit vectors equa”y partitioned

0.1084 and 0.7724 f&E and A with the x-axis of the alignment
tensor being best sampled and thaxis, the least, an® =
{0.4490,0.3763,0.1747 For the backbone NH-vectors, the

between three cones of semi-angl€,104° and 18 (with the
cone axis aligned along theaxis). For each successive step,
an additional cone of semi-anglé greater than the largest semi-

sampling tensor frame is related to the alignment tensor frame angle for the preceding distribution was added and the vectors

by R(0°,90°,142). Given the fractions of NH-vectors aligned

equally partitioned between the cones. This procedure was

along the three principal sampling axes in ubiquitin, eq 17 can continued until a cone semi-angle of ?7@as reached. The

be used to analyze how well the alignment tensor is defined,

total number of vectors varied from 195 to 216 in the various

depending on the tensor orientation with respect to the samplingdistributions. An axially symmetric distribution of vector

frame (Figure 3). Note that the lowest possible quality factor
for this set of vectors is\min = 0.69 (eq 19). The analysis,

orientations for each cone was achieved by assigning uniformly
distributed values of the azimuthal angle, equi-partitioned in

assuming axial symmetry of the alignment tensor, indicates thatthe range 8-360°. For a completely anisotropic distribution

the highest quality factor can be obtained in the regiofl of
40—60 for a large range ip values. This implies that although
the alignment of ubiquitin in the DMPC:DHPC medium
corresponds to a rather high quality factar> 0.77, a change
in the orientation of the alignment tensor by roughly #@®uld
result in a more optimal sampling for NH-vectors. Several

methods are available to bring about a change in the orientation

of the vectors, the azimuthal angle was restricted to th220°
range. Synthetic relaxation datd;( T, and NOE) were
generated for the above values of the diffusion tensor elements
and ofE. The diffusion tensor was calculated from the relaxation
data (seeDerived Tensor Accuracy as a Function ofA in

(40) Engelke, J.; Ruterjans, H. Biomol. NMR1995 5, 173-182;

of the alignment tensor. These include doping the DMPC:DHPC Cordier, F.; Brutcher, B.; Marion, 0. Biomol. NMR1996 7, 163-168;

system with ion& or the use of a different orienting medium,
for example, phagésor purple membrane¥. Table 3 shows
the quality factors for ubiquitin in different liquid-crystalline

environments (also depicted in Figure 3). It can be seen that in
the case of ubiquitin the purple membrane system produces

Zheng, L.; Fischer, M.; Zuiderweg, H. Biomol. NMR1996 7, 157-162;

Dayie, K. T.; Wagner, GJ. Am. Chem. Socl997 119 7797-7806;
Engelke, J.; Ruterjans, K. Biomol. NMRL997, 9, 63—78; Allard, P.; Had,

T. J. Magn. Resonl997, 126, 48—57; Ghose, R.; Huang, K.; Prestegard,
J. H.J. Magn. Resonl998 135 487—-499;.Carlomagno, T.; Maurer, M.;

Hennig, M.; Griesinger, CJ. Am.Chem. So200Q 122, 5105-5113.
(41) Ramirez, B. E.; Bax, AJ. Am. Chem. S04998 120, 9106-9107.
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Figure 4. lllustration of the robustness and the complexity of variations
in the derived values of the rotational diffusion tensor. Paneld a
illustrate that the percentile errors of magnitudg) @nd orientation
(ea) Of the tensor are small for any > 0.7 for the simulation described

Fushman et al.

and b depict the errors in the principal elemertg and the
orientation §,) of the diffusion tensor in the case where the
sampling tensor was taken to be axially symmetric and has its
unique axis orthogonal to the unique axis of the diffusion tensor.
The results indicate that although the inaccuracy in the diffusion
tensor determination is high for small values of the quality
factor, it becomes reasonably small (bethande, fall below

5%) for A > 0.7. Similar trends were observed for a completely
anisotropic diffusion tensoDy = 2.5 x 10" s71, Dy = 3.5 x

10’ st andD, = 4.5 x 10" s71) and a completely anisotropic
sampling tensor (Figure 4 parts ¢ and d) (the principal axis
frames of the two tensors are assumed to be co-incident),
although the magnitude of the errors can be larger than in the
axially symmetric case. Although the details of the relationship
of A with €4 ande, are complex in the general case, and depend
on the nature of the distribution, the diffusion tensor and the
relative orientation of the two tensors, extensive simulations
show that the errors are expected to be within experimental
error*? for values ofA greater than 0.7. In all of the cases we
looked at, this corresponded tdza< 0.25.

Possible Limitations of the Quality Factor Approach.The
quality factor introduced here might not be an adequate estimator
of the accuracy of tensor determination in a particular case of
an axially symmetrid-tensor, if the unique axis of the tensor
is oriented at the magic angle with respect to all three principal
sampling axes. The theoretical quality factor predicted from eq
12 is then 1 and is independent of the actual distribution of
vectors along the principal sampling a¥83.he “magic angle”
orientation is particularly troublesome for determination of any
axially symmetric rank-2 tensor, which in this case reduces to
a single value. Therefore, it is important to understand the
limitations of the quality factor\ as an accurate estimator of
the errors in tensor determination in this particular case.

A particular case that deserves consideration is when both
the D-tensor and the sampling tensor are axially symmetric with
their unique axes oriented at the magic angle (94t@ each
other. Since selection of the andy-axes of the sampling tensor

in Theory. The variation in the magnitude of the errors and their jsthen arbitrary, they can always be selected (g.g=,45°) so

distribution between the axially symmetric (a, b) and fully anisotropic
(c, d) cases illustrate the complex variability of the error distribution

in different models. Data shown in panels a and b were derived for an

axially symmetric sampling tensor and an axially symmetric diffusion
tensor Po = 3.0 x 10’ st andD; = 4.5 x 10’ s™%) with the unique

that the unique axis of thB-tensor makes the magic angle to

all three axes of th&€ tensor. To understand the relationship
between the sampling parameters and the accuracy of tensor
determination in this particular case, we also performed simula-

axes of the two tensors Orthogona| to each other. The Corregpondingtion Of the rO'[atlona| dlfoSIOﬂ tensor. AS |nd|cated by the I’eSU|'[S

cases for a fully anisotropic sampling tengdmand a fully anisotropic
diffusion tensor Py =2.5x 10°s %, Dy=3.5x 10’ s *andD,= 4.5

x 107 s71) are depicted in panels ¢ and d. The variatiorofvith A
(panel e) ancE (panel f) was derived for axially symmetric sampling

of our simulations shown in Figure 4e, the errors in tensor
determination do not correlate well with the quality factors
determined from the calculated rotational diffusion tensor
(Figure 4e). In particular, the errors remain large even for the

and diffusion tensors (same as Figure 4a,b) with the unique axes of astimated quality factor close to 1. Thus the quality factor

the two tensors at an angle of 54with respect to each other. In this

particular caseA becomes a less accurate estimator of the quality of
the tensor determination, while the observed errors in the diffusion

tensor still correlate well with the generalized sampling paranigter

becomes a less accurate estimator of the errors in tensor
determination in this special case. However, even in this
particular case the errors in tensor determination drop to their

(see text). The errors in the diffusion tensor were calculated for iMiting values (within the “experimental” errors) f& < 0.25
computer-simulated relaxation data as described in the text (egs 20 (Figure 4f). Thus, the generalized sampling parantétemains

21). The total number of data points was 38 006-d and 19 000

an accurate estimator of the expected errors of the diffusion

(e—f). For each of the 38 distributions, there were 1000 and 500 Monte tensor. As follows from these simulations, a second rank tensor
Carlo cases, respectively. For presentation purposes, the data wergyuantity, such as the rotational diffusion tensor, can be ac-
distributed between 50 bins of equal width covering the observed range curately determined for vector distributions with value&of

of A values. Shown are the total ranges:@br ¢, values (thin vertical

lines), the range from the first to the third quartile (open bars), and the

(42) The level of “experimental” error ikg and e, was obtained as

average value (solid circles) for each bin. Also indicated with bar follows. Relaxation datal, T>, and NOE) were simulated for an uniformly

diagrams on top of each panel is the number of data points in each bin

(in percent of the total number).

Theory section). The spread in the values characterizing th
diffusion tensor was determined from 1000 Monte Carlo steps

distributed set of 1,000,000 unit vectors. The influence of the measurement
errors on the diffusion tensor calculated from these relaxation data was
estimated using 1000 Monte Carlo simulations utilizing the 2% random

gerror (as in all other simulations, see Theory) added to the synthetic

relaxation data. The uncertainty in thgande, values obtained from the
resulting distributions of the principal values and orientations of the diffusion

using the random error in the relaxation data. Figure 4 parts atensor, is what we term “experimental error”.
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0.25. Note that these values ®fcorrespond to relatively good  considerations address issues related to the intrinsic properties
orientational sampling, as the maximum available anisotropy of a finite set of vectors available in a real experiment in real
of the sampling tensor & = 0.25 is{ = 0.25. molecular systems and are unrelated to the issue of measurement

The example considered here is a particular case related toprecision and accuracy.
the magic angle orientation of the two tensors. For any other
orientation and/or in the general case of the anisotrDgiensor, Conclusions
the quality factor treatment introduced here is valid.

Practical Guidelines for the Optimal Design of Experi-
ments. The theory developed here makes it possible (a) to asses
the quality of a second-rank tensor determined using orienta-
tional dependence of physical properties as, for example,
rotational diffusion or alignment tensors, and (b) to predict the
likely limitations of the vector set available for these studies
prior to actual experimental measurements. This permits opti-
mization of the experimental design, to improve accuracy. As
follows from the discussion above, each set of interatomic
vectors can be represented by a point on the allowed plane
(Figure 1). Depending on the location of the representing point
with respect to the origin, the lower-bound (“worst-case”)
estimate of the level of accuracy (quality facta) could be
performed using egs 719, without prior knowledge of the
orientation of the tensor to be determined. A further refinement
is then possible given additional information regarding tensor
magnitude and orientation. A simple rule follows from the theory

We have developed a quantitative approach to determine (1)
§1ow well interatomic vectors in a particular protein structure
sample orientation space, (2) how well this particular distribution
of bond vectors samples the various components of a second-
rank tensor, and (3) the ability of this distribution of bond vectors
to completely characterize the tensor. This approach is in general
applicable to any second-rank tensor property whose determi-
nation relies on the sampling of the angular space by the
structure. It allows optimization of the experimental design to
improve accuracy. The utility of the proposed approach is
demonstrated here for the overall rotational diffusion and
alignment tensors. The analysis of a set of 1736 protein
structures representing a variety of known protein folds,
provided statistical analysis and revealed characteristic patterns
in the orientational sampling by various bonds in a protein. It
should be mentioned here that this method is not applicable to
properties which are dependent on local structure such as, for

developed here: the closer the representing point is to the originexample' the chemical shift anlsotropy' of a given n.UCIEUS' I.n
this paper, the approach has been illustrated with protein

(Figures 2) (i.e., the closer the distribution of the vectors is but it | I licabl h lecul
to a uniform distribution), the better the sampling of the tensor structures, but it is equally applicable to other molecules,

and the higher the accuracy of its determination. The experi- including nucleic acids, and carbohydrates.
menter may then either select a particular subset of the available
vectors or include additional measurements (e g-H%Cor NC*-
vectors, in addition to NH-vectors) to ensure the desired level
of tensor sampling, represented by the quality factor. Note also
that the generalized sampling paramefeeqgs 4, 16, provides

a quantitative measure of the degree to which a particular set
of vectors could be safely considered as uniformly distributed,
essential for approaches based on this assumptidinese JA001128]
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