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Abstract: Second-rank tensor properties such as the overall rotational diffusion tensor and the alignment tensor
can be determined by NMR methods measuring orientation of interatomic vectors. Here we examine the effect
of incomplete sampling of orientation space by interatomic vectors in a molecule on determination of a second-
rank tensor. We have developed a quantitative approach to determine (1) how well orientation space is sampled
by a particular protein or substructure, (2) to what extent this particular distribution of bond vectors samples
the various components of a second-rank tensor and, (3) the ability of this distribution of bond vectors to
completely characterize the tensor. This approach is generally applicable to any second-rank tensor property
whose determination relies on the sampling of the angular space by the structure or substructure. The theory
permits assessment of the expected degree of accuracy of tensor determination using a selected set of interatomic
vectors (e.g., NH or CRHR, etc), for a given molecular structure. The sampling properties of real proteins are
analyzed using a database of 1736 structures, representing all experimentally determined protein folds. This
theoretical approach is applied to the rotational diffusion and alignment tensors obtained from nuclear magnetic
resonance data for several systems, including ubiquitin andâARK PH domain. Finally, the proposed sampling
characteristics are related to the accuracy of the determination of the rotational diffusion tensor from spin-
relaxation data, as an example of an unknown second-rank tensor. Knowing the accuracy of the tensor quantity
derived from experimental data assists in optimizing experimental design.

Introduction

Recently, significant attention has been paid to the determi-
nation of several second-rank tensor properties from liquid-state
NMR. These include measurement of the alignment tensor from
residual dipolar coupling information in oriented systems1-3 as
well as the magnitude and orientation of the rotational diffusion
tensor from relaxation data in isotropic solution.4-9 These
measurements provide valuable structural information in the
form of “long-range”, orientational constraints10-12 not available
from NOE measurements and are likely to improve significantly

the accuracy of protein structures determined in solution.
Determination of the overall tensor properties, like the alignment
tensor or the rotational diffusion tensor, is critical for precise
and accurate derivation of orientational constraints for structure
determination. While these tensors can be directly determined
from experimental measurements based on protein structure,1,2,4-9

their determination in the absence of structural information is
less straightforward. Approaches were suggested to estimate the
largest principal value and the rhombicity of these tensors,
assuming uniform orientational distribution for the measured
internuclear vectors.13 A structure refinement protocol suggested
recently14 avoids the necessity of prior knowledge of the
orientation of alignment tensor; however, the derivation of
intervector angles from residual dipolar couplings in this
approach requires knowledge of the principal values of the
tensor. An attractive possibility of deriving “low-resolution”
orientational constraints without explicit determination of the
alignment tensor was also suggested15 and could be used as a
starting step in structure determination. However, structure
refinement to a high level of accuracy and precision will rely
on accurate determination of the alignment tensor.
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The degree to which sets of tensors, either solely, or in
combination with small sets of internuclear scalars such as
NOEs, can be used for structure determination remains ill-
determined.16,17Nevertheless, these measurements of larger-scale
hydrodynamic properties have provided insight into the relative
orientation of multiple domains in weakly interacting multido-
main systems,9,18-20 where interdomain NOE information is
scarce, or time-averaged.

The approaches mentioned above are based on measurements
of orientation-dependent characteristics for a set of interatomic
vectors in a molecule. Two issues need to be addressed for a
critical assessment of the accuracy of these analyses: (1) how
well do the results of such analyses fit the available experimental
data and (2) how well can the tensor quantities of interest for
a particular molecule or substructure be determined with the
finite set of interatomic vector orientations available. Approaches
to the former have been suggested.6,17,21The second issue, which
is less explored, arises because only a limited set of vectors is
available for analysis in any protein or substructure. The derived
tensor values could then depend on the measured set of
interatomic vectors, as illustrated in ref 6 for the rotational
diffusion tensor determined from the NH- and CRHR-vectors,
used separately or grouped. It is important to develop a measure
of how well the various components of the tensor properties
can be determined from experimental measurements for a
specific protein structure. In other words, how far is it possible
to determine accurately the magnitude and orientation of a given
second-rank interaction from a finite set of interatomic vectors?
This analysis could also help select a proper subset of
interatomic vectors to provide optimal sampling of the desired
characteristics and, therefore, could serve as a guide for
experimental design in these kinds of studies.

When an infinite number of uniformly oriented vectors is
available, then obviously all directions are represented equally,
and the quality of a determined tensor is independent of the
orientation of its principal axes. Real proteins in actual NMR
experiments, however, differ from this hypothetical case in two
ways: (a) the number of available interatomic vectors is limited,
both by the finite number of atom pairs in a protein and by the
type of atoms/nuclei observable in a particular experiment, and
(b) the orientational distribution of the available vectors is not
necessarily uniform. The latter condition, which reflects the
nonuniform character of a protein structure, is an essential
structural feature in a folded protein in contrast to a random
polymer coil. Consider, for example, anR-helix, where all the
backbone NH-vectors are aligned nearly parallel to the helix
axis. If this set of vectors is the only set used for the
determination of a second-rank tensor property, such as the
alignment tensor or the rotational diffusion tensor, then the
principal axis of the tensor in question, aligned parallel to the
helix axis, would be well sampled by the vector set, whereas
the axes orthogonal to it would be essentially undetermined.

In this work, we present a theoretical framework to assess
the degree to which a protein or substructure samples conforma-

tion space. This theory allows, for a given protein structure, an
assessment of the expected degree of accuracy using a selected
set of vectors (e.g., NH or CRHR etc). This provides guidelines
for the design of experimental approaches that provide the best
possible accuracy. We discuss its implications on the determi-
nation of second-rank tensor properties in solution or, con-
versely, the characterization of the structure of a particular
protein given a set of measurements of certain second-rank
tensor properties in solution. Although the discussion here is
focused mostly on the overall rotational diffusion of protein
molecules in solution and the characterization of the alignment
tensor for proteins in liquid-crystalline media, the results are
applicable to any overall second-rank tensor quantity, accessible
by various orientation-dependent measurements, not only NMR.

As a particular example, let us consider the determination of
the overall rotational diffusion tensor from heteronuclear
relaxation data. The general procedure followed in this case
involves the determination of aT1/T2 ratio at a given field for
a set of backbone15NH-5,6,8,9or 13CRHR-vectors.6 The parameters
characterizing the diffusion tensor can then be obtained by
minimization of a target function incorporating these ratios and
those calculated from an available X-ray or NMR structure of
the protein. In reality, a limited set of data is available for the
analysis, since not all the atoms are available for the experi-
mental observation and current experimental approaches are
limited to pairs of bonded nuclei in the backbone:15NH and
13CRHR.6 In addition, loops and the termini are usually excluded
from this relaxation analysis because their structural features
are ill-defined on the relevant time scale. In addition to these
experimental considerations, the limited size of the protein or
substructure, and its limited sampling by any internuclear pair,
restrict the ultimate accuracy of any tensor determination.

Theory

The theory is developed here for the general case of an arbitrary,
unspecified second-rank tensor,D, determined by experimental mea-
surements for a selected set of interatomic vectors. In the following
sections, this theory will be applied to two particular cases: (a) the
determination of the overall rotational diffusion tensor of a protein in
solution from NMR relaxation measurements5,6,8,9 and (b) the deter-
mination of the alignment tensor of the molecule in an ordered medium
from residual dipolar couplings.1-3

Both the rotational diffusion and alignment tensors transform as
second rank tensors and thus have the same properties under rotation.
To understand the transformation properties of these tensors, we make
use of the fact that an arbitrary rank-2 tensor can be decomposed into
a scalar (rank 0) which corresponds to the trace of the tensor, a pseudo-
vector (rank 1) which represents the anti-symmetric part of the tensor,
and a traceless tensor of rank 2. The rank 1 part is zero for both
symmetric tensors considered here, while the rank 0 part, which is
direction independent, equals (1/3)Tr[D] (hence has to be determined)
in the case of the rotational diffusion tensor and is zero in the case of
the (traceless) alignment tensor. Therefore, the diffusion tensor is
characterized by three independent eigenvalues and three orthogonal
eigenvectors (or six independent elements in an arbitrary coordinate
system). The alignment tensor or the other hand, has only two
independent eigenvalues and three orthogonal eigenvectors (altogether
five independent elements in an arbitrary coordinate system). The
spectral manifestation of the alignment tensor is the residual dipolar
coupling. The spectral manifestation of the rotational diffusion tensor
can be represented by an effective diffusion constant for each bond
vector. For small anisotropies, this can be expressed in the same form
as the residual dipolar coupling4,6 (compare, for example, eq 13 in ref
6 and eq 1 in ref 21).

Assume we have at hand a set of unit vectors denoting the various
interatomic vectors of a particular protein in an arbitrary reference
frame. In the case of heteronuclear NMR relaxation measurements, this
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is typically a set of the backbone NH-bond vectors. In the case of
residual dipolar coupling measurements, these are typically a much
larger set of vectors, comprising the NH, CRHR, C′N, and CRCâ bond
vectors and C′H.20,22The order tensor formalism, introduced by Saupe23

to represent orientational order in a uniaxial liquid-crystalline medium,
can be applied to this system to represent the sampling of the
orientational degrees of freedom along three Cartesian axes.

The Sampling Tensor Formalism.For a given a set of unit vectors,
a sampling tensor,Ω, which is a traceless, symmetric tensor of rank 2
with five independent elements, can be defined as

whereri is the projection of a given unit vectorr on the axisi where
i, j ) x′, y′, z′ (an arbitrary reference frame) andδij is the Kronecker
delta. There is an obvious similarity of theΩ tensor, which reflects
statistical, time-independent sampling, to the more conventional order
parameter tensorS, which reflects time-dependent fluctuations. The
brackets denote averaging over all the vectors in the ensemble. The
sampling tensor can be diagonalized to yield the principal axis frame
that corresponds to the direction of best sampling. The best sampled
frame is related to the original frame by a rotationR(æ,θ,ψ) whereæ,
θ, andψ are the Euler angles relating the two frames. In the principal
axis frame of the sampling tensor, the fraction of vectors oriented along
the three principal directions are given by

wherei ) x, y, zare the principal axes andΩi are the principal values
(ordered asΩz g Ωy g Ωx thus,fz g fy g fx) of the sampling tensor.24

Note that

In the case of a uniform distribution of vectors,Ω is the null tensor
and25 fx ) fy ) fz ) 1/3. When all the vectors are oriented along the
principal z-axis of the sampling tensor, thenΩx ) Ωy ) -1/2 andΩz

)1, andfx ) fy ) 0, andfz ) 1. In general, deviations of the principal
values, Ωi, of the sampling tensor from zero, and that of the
correspondingfi values from1/3, reflect deviation from a uniform
distribution of the vectors.

Generalized Sampling Parameter.We define a generalized sam-
pling parameter¥ (in a manner similar to the generalized squared order
parameter26 used in spin-relaxation analysis) given by27

The generalized sampling parameter quantifies the distribution of vector
orientations on a scale from 0 to 1. For a uniform distribution of vectors,
¥ ) 0, and this represents an optimal sampling of angular space.¥ )
1 if all the vectors are aligned along one direction, representing the
worst possible sampling of angular space.

Average ConstantDav. What are the possible implications of this
sampling on the determination of a second-rank tensor quantity such
as the rotational diffusion tensor or the alignment tensor? It is quite
clear that, in the case where theD-tensor frame and the frame of best
sampling are collinear, the principal element of the tensor which has
the largest number of vectors aligned parallel to it is sampled the best
and that with the least number of vectors parallel to it is sampled the
worst (cf. the helical paradigm mentioned above). In the general case,
the accuracy of determination of orientation may not be so apparent,
because the data from which the tensor quantity is extracted usually
have highly nonlinear dependencies on the vector orientations. Evi-
dently, the best possible scenario is a uniform distribution of vectors.

In the general case, the principal axes of the tensorD are not
necessarily aligned along the best-sampled directions, as determined
by the sampling tensor introduced above. To quantify how well a given
distribution samples the various elements of the tensor of interest,D,
we define an average constantDav, which in an arbitrary frame is
represented by28

This can be written in explicit form as

This has the same form as the effective diffusion constant derived
previously.4,6 In the case of a uniform distribution, all parts of the tensor
are sampled equally well, andDav ) 1/3Tr[D] ) Diso which is the
isotropic value ofD.

The value ofDav quantifies how well the overall tensor is sampled.
To quantify how well each principal component of the tensor is defined
by a given set of vectors, we may rewrite eq 5 in the principal axis
frame of the sampling tensor and utilize eq 2 to obtain

whereΦ ) {Φxd, Φyd, Φzd} is a three-component vector which provides
a measure of how well each principal component,Di () Dxd, Dyd, Dzd),

29

of the tensor is sampled

and (l i, mi, ni) are the direction cosines that determine orientation of
the i-th principal axis of theD-tensor (i ) xd, yd, zd) with respect to the
principal axes (x, y, z) of the sampling tensor frame.

In the case of a uniform distribution,Φi ) 1/3 for all principal
components of the tensorD, independent of orientation of the principal
axes. In the most extreme counter case, all vectors are aligned parallel
to one axis as in NH-bonds in theR-helix, and the sampling ofDi is
maximal (Φi ) 1) when the correspondingi-th principal axis of the
tensor is parallel to the helix axis, and minimal (Φi ) 0) when it is
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(alignment tensor) noncollinear and nonplanar vectors is required for a full
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Ωij )
3〈r ir j〉 - δij

2
(1)

fi ) 〈r i
2〉 )

2Ωi + 1

3
or inversely, Ωi ) 3

2(fi - 1
3) (2)

fx + fy + fz ) 1 (3)

¥ )
2

3
∑

i)x′,y′,z′
Ωij

2 )
2

3
∑

i)x,y,z

(Ωi)
2 )

1

2
(3 ∑

i)x,y,z

fi
2 - 1) )

1

4
[(3fz - 1)2 + 3(fy - fx)

2] (4)

Dav )
1

3
Tr[D] +

2

3
∑

i,j)x′,y′,z′
ΩijDij (5)

Dav ) 〈x2〉Dxx + 〈y2〉Dyy + 〈z2〉Dzz+ 2〈xy〉Dxy + 2〈xz〉Dxz +
2〈yz〉Dyz (6)

Dav ) ∑
i)xd,yd,zd

ΦiDi (7)

Φi ) fxli
2 + fymi

2 + fzni
2 (8)
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orthogonal to the helix. If the principal axis of the tensor makes an
angle of 54.7° with the helix axis, thenΦi ) 1/3 in this case.

Generalized Quality Factor. We define a quality factor which
reflects how efficiently a given structure samples all elements of the
tensor of interest, as follows

Equation 9 is similar in form to an expression30 representing the
orientational order in lipid bilayers.Λ has a maximum value of 1 for
a uniform distribution, which represents the optimal sampling, and a
value of 0 when all the vectors are oriented along thez-axis of the
principal frame of the tensorD. Using eqs 7 and 8, the expression for
the quality factor can be explicitly derived as:

Here{æ, θ, ψ} are the Euler angles describing the orientation of the
principal axis frame of theD-tensor with respect to the sampling tensor
frame.R ) [Dy - Dx]/[Dz - (Dx + Dy)/2] is the degree of rhombicity
of theD-tensor. Note that the first two terms in eq 10 are independent
of the actual values of the principal components ofD. The last term in
eq 10 represents the effect of rhombicity of the tensor, and has the
following angular dependence:

For an axially symmetric distribution of the vectors, that is, whenfx )
fy, the ∆Φ term is not generally zero except in the case of a uniform
distribution. For an axially symmetric tensorD, the rhombicityR ) 0,
and the expression for the quality factor, eq 10, reduces to

Inspection of eq 12 reveals that for an axially symmetricD-tensor, the

value of the quality factor is independent of the principal values ofD.
In the case of an axially symmetric distribution of vector orientations,
eq 12 can be further simplified to

The quality factor is maximal,Λ ) 1, when all three orientations are
sampled equally (fx ) fy ) fz ) 1/3), independent of the orientation of
the tensorD and of the degree of rhombicity of the latter. It also equals
1 in the case of an axially symmetric tensorD, if its z-axis is oriented
at the “magic” angle (54.7°) with respect to all three principal axes of
the sampling tensor, independent of thefx:fy:fz ratio. In the case where
all of the vectors are oriented along the i-th principal axis of the
diffusion tensor (i*z), we obtain

which reduces to1/2 for an axially symmetric diffusion tensor (where
Di ) Dj ) D⊥; Dz ) D|).

Given the principal values and orientation of theD-tensor, eqs 10-
13 (see also eqs 17, 18 below) provide an estimate of the degree of
accuracy of the derived tensor, for a particular set of vectors used for
the determination. As outlined in the following sections, these equations
also allow an assessment of the available accuracy of tensor determi-
nation for any given set of vectors, without prior knowledge of the
tensor.

Geometric Representation of the Sampling Characteristics of a
Vector Set. Equation 2 provides the basis for a useful and simple
geometric representation of the distribution of vector orientations, as
it allows one to represent each ensemble of unit vectors by a single
point (or a single three-component vector)f with the coordinates
{fx, fy, fz} in a general three-dimensional space, spanned by all values
of f.

Allowed Plane.According to eq 3, only two of the three components
of a f-vector characterizing the orientational distribution are independent.
The locus of all allowed points in the{fx, fy, fz}-space is then reduced
to a plane triangle with the vertexes at{1,0,0}, {0,1,0}, and{0,0,1},
Figure 1a. Since the actual dimensionality of the locus is two, it is
convenient to introduce a two-dimensional set of generalized coordinates
{η, ú} to parametrize the allowed plane and thus provide a direct
characterization of the location of each point in this plane. We use the

(30) Sanders, C.; Hare, B.; Howard, K.; Prestegard, J.Progr. Nucl. Magn.
Reson. Spectrosc.1994, 26, 421-444.

Figure 1. Geometrical representation of sampling fractions (fi). Loci for the allowed positions in the{fx, fy, fz}-space for the geometrical representation
of various sets of unit vectors. (a) the orientation and 3D position of the allowed triangle, according to eq 3. (b) Two-dimensional parametrization
of the triangle plane using the generalized coordinates{η,ú}, eqs 14-15, representing the rhombic and axial components of the sampling tensor.
Ellipses and arcs represent contour lines corresponding to various values (indicated by the numbers) of the generalized sampling parameter,¥,
according to eq 16. (c) The same plane representation as in (b), with the contour lines indicating various levels of the lower boundary for the quality
factor, Λmin, as discussed in the text, eq 19. Solid lines representΛmin for an axially symmetricD-tensor, and the same levels in the presence of
rhombic components withR ) 0.2 are shown with dotted lines. The shaded area is the minimal representation triangle (see text), where all allowed
points are folded in, under symmetry transformations caused by ordering of the principal values of the sampling tensor. The origin, indicated by
x in (a), (b), and (c), corresponds to the case of a uniform sampling,η, ú ) 0. The three sides of the allowed triangle in (b, c) are described by the
following equations:ú + 1.5η ) 0.5; ú - 1.5η ) 0.5; andú ) -0.25. Also indicated in c are four points representing the various sets of the
backbone NH-vectors in theâARK PH domain: for all core amides (solid square), only for theR-helix (circle), and only forâ-strands (triangle),
and in ubiquitin (open square).

Λ ) 1 - 1
4
|(3fz - 1)(3 cos2 θ - 1)| (13)

Λ ) 1 - |(2Di - Dj - Dz)

(2Dz - Di - Dj)
|

i,j*z
) 1 - 1

2
|1 - 3R∆Φ|

Λ ) 1 - |Dav - Diso

Dz - Diso
| (9)

Λ ) 1 - 1
4
|(3fz - 1)(3 cos2 θ - 1) + 3(fx - fy)sin2 θ cos 2æ -

3R∆Φ| (10)

∆Φ ≡ Φxd
- Φyd

) 1
2
(3fz - 1)sin2 θ cos 2ψ -

(fy - fx)[cos 2(ψ - æ) sin4 θ
2

+ cos 2(ψ + æ)cos4
θ
2] (11)

Λ ) 1 - 1
4
|(3fz - 1)(3 cos2 θ - 1) + 3(fx - fy)sin2 θ cos 2æ| (12)
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following set of generalized coordinates:

where η and ú range from -0.5 to 0.5 and from-0.25 to 0.5,
respectively (Figure 1b,c). The allowed space is completely spanned
by η andú, and can be further reduced when the fractions are ordered
as fz g fy g fx, see below.

It is worth mentioning that the generalized coordinates,ú and η,
introduced here, have certain physical meaning: they directly represent
the axial and rhombic components of the sampling tensor:

These coordinates directly characterize the anisotropy and rhombicity
of a given distribution of vector orientations and thus provide full
characterization of the sampling tensor for a given set of vectors.

Map of the Generalized Sampling Parameter.In terms of the
3-dimensional space of the coordinates{fx, fy, fz}, each value of the
generalized sampling parameter¥ can be represented by a sphere of
radius x(2¥+1)/3 centered at the origin and described by the
equation: fx2 + fy2 + fz2 ) (2¥ + 1)/3, following from eq 4. The loci
of the allowedf-vectors are then determined by the intersections of
this sphere with the allowed triangle, which result in concentric circles
(for ¥ e 0.25) or arcs (¥ > 0.25) (Figure 1b). The constant-¥ lines, in
the generalized coordinate system, are described by

Mapping of the Quality Factor. In the generalized coordinate
system, the quality factor is given by

with the following angular dependence of the rhombic term:

As pointed out above, eqs 17 and 18 can be used to assess the accuracy
of determination for a derived tensor value, given components of the
sampling tensor. These equations also allow mapping of the quality
factor establishing the relationship between sampling characteristics
of vector sets and the available levels of accuracy of tensor determi-
nation. The following analysis assumes that the rhombic component
in eq 17 is negligible, for simplicity.

For a particular value of the quality factor and a given relative
orientation of sampling andD-tensors, the corresponding values ofη
and ú can be found by solving eq 17. Since the orientation of the
D-tensor is not known a priori, we need to find the point locations in
the allowed plane corresponding to a given value ofΛ for anarbitrary
relative orientation of the two tensors,D and the sampling tensor. The
obvious limiting cases are (i)Λ ) 0 when the solutions to eq 17 exist
only for θ ) 0 or θ ) 90°, æ ) 0, 90° and are located at the vertices
of the triangle, and (ii)Λ ) 1, when the solutions (in terms ofη,ú)
exist for all values of{θ,æ} and are spread over the whole area of the
triangle. The case of an arbitraryΛ is more complex.

Λ-Contours and the Lower Boundary Value,Λmin, of the Quality
Factor. Since the values of the trigonometric functions in eq 17 are
limited, for any given nonzero value ofΛ there is always a region in
the allowed plane centered at the origin, where there is no solution to

eq 17. Contours can be plotted for any given value ofΛ (Figure 1c) so
that those points, within the area surrounded by the contour, have values
of the quality factor greater thanΛ independentof orientation and
principal values of theD-tensor. In contrast, for those points outside a
given contour, the expected values of the quality factor could be greater,
equal to, or less thanΛ, depending on the orientation of theD-tensor
with respect to the sampling tensor frame. This leads to the concept of
a lower boundary value,Λmin. Each point{η,ú} in the allowed plane
is characterized by a value ofΛmin

31 which represents the lowest possible
value of the quality factor over all possible orientations of theD-tensor;
Λmin represents the “worst-case” estimate for the quality factor. The
actual value of the quality factor depends on the orientation and
rhombicity of theD-tensor and is in the rangeΛmin e Λ e 1.32 This
geometric representation ofΛmin-contours, defining areas of guaranteed
high Λ values,Λ g Λmin (Figure 1c), will help in experimental design,
with the goal of selecting a vector set such that its representation on
the allowed plane is as close as possible to the origin.

In the above discussion we assumed that the rhombicity effect is
negligible. Significant rhombicity will perturb the clear geometrical
picture outlined above. The effect is proportional toR and, therefore,
is small for small degrees of rhombicity of theD-tensor (Figure 1c).
As can be seen from eq 18, for certain orientations of theD-tensor
frame, this effect could be negligible even for substantial values ofR.
It is also worth noticing that the rhombicity term in eq 17 is proportional
to the distance from the origin in the allowed plane. Therefore, its
absolute contribution is expected to be small in the target areas (η,ú ,
1) close to the origin in the allowed plane, that is, those whereΛ ≈ 1.

“Minimal” Triangle Area. The ordering of the principal values of
the sampling tensor

introduces symmetry restrictions33 which further reduces the allowed
representation region to the “minimal triangle” (shaded in Figure 1c)
described by the following conditions:η g 0, ú g η/2 andú + 1.5η
e 0.5. In this area, the minimal possible value ofΛ (taking into account
all possible orientations of theD-tensor) is given by the following
expression, valid for|R| e 2:34

This allows a straightforward estimation of the lower bound for the
quality factor for a given set of vectors, without any preexisting
knowledge of the orientation of theD-tensor. The lower bound for the
quality factor in the presence of rhombic components of aD-tensor is
lower than that for an axially symmetricD-tensor: Λmin ) 1 -
max{2ú,ú + 1.5η}.

Derived Tensor Accuracy as a Function ofΛ. To assess the
relation between the accuracy of the estimated tensor quantity and the
quality factor, we determined the overall rotational diffusion tensor
using synthetic sets of relaxation data which includeT1, T2, and NOEs
generated from a specific distribution of vector orientations. Random
errors of 2% were introduced into theT1, T2, and NOE data sets. To
quantitate the errors in the estimated diffusion tensor, we define two
quantitiesεd and εa, representing the relative errors in the principal
values and in the orientation of the diffusion tensor, respectively. These
are defined as

(31) It can be shown that, given the rhombicity factorR, each point in
the allowed plane is characterized by a single value ofΛmin.

(32) For any given set of vectors, there is always at least one orientation
of a D-tensor such thatΛ ) 1. This orientation is characterized by the
following Euler angles:æ ) 45°, θ ) 54.7°, and ψ ) -0.5 tan-1[2ú/
(ηx3)] (if R * 0).

(33) This ordering (hence symmetry restrictions) results from insensitivity
of the sampling tensor to the directionality (sign) of the principal axes.

(34) A full expression for all values ofR is

Λmin ) 1 - max{2ú + 1.5η|R|, ú(1 + 3
2|R|) + 1.5η|1 - 1

2|R||}

η ) 1
2
(fy - fx)

ú ) 1
4
(3fz - 1) (14)

ú ) 1
3[Ωz - 1

2
(Ωx + Ωy)]

η ) 1
3
(Ωy - Ωx) (15)

¥ ) 4ú2 + 3η2 (16)

Λ ) 1 - |ú(3 cos2 θ - 1) - 3
2

η sin2 θ cos 2æ - 3R∆Φ|
(17)

∆Φ ) ú
2

sin2 θ cos 2ψ - η
2[cos 2(ψ - æ) sin4 θ

2
+

cos 2(ψ + æ) cos4
θ
2] (18)

Ωz g Ωy g Ωx

Λmin ) 1 - max{2ú + 1.5η|R|, ú + 1.5η + 3
2|R|(ú - 0.5η)} (19)
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where Di
act and Di

calc are the actual and calculated values of the
principal elements of the tensor,Ract and Rcalc are the actual and
calculated rotation matrices relating the molecular frame to the principal
axis frame of the diffusion tensor and the superscriptT represents the
matrix transpose. Bothεd andεa are zero for an exact match between
the actual and estimated tensors, whileεa has a maximal value of 100
when the actual and calculated orientations are orthogonal to each other.
Absolute values are used in the evaluation of the trace in eq 21 because
the signs of theR’sare not experimentally determined. A few examples
of the relationship between the quality factorΛ and the errorsεd and
εa are shown in Figure 4. All calculations were performed using the
quadratic form of the diffusion tensor4,6 with the tensor calculated from
the relaxation data using singular value decomposition35 (Ghose et al.,
in preparation).

Results and Discussion

In this section, we consider several applications of the
theoretical approach developed above.

What Are the Sampling Properties of Known Protein
Structures? To assess how various sets of interatomic vectors
are sampled in real proteins, we performed a survey using
structures from the Protein Data Bank. A set of protein structures
was selected representing the whole variety of protein folds
currently available. The selection criteria are:36 the proteins are
at least 30 residues long, have less than 40% sequence identity
or more than 30% or 30 residues length difference from other
set members, are either X-ray structures ate3 Å resolution or
NMR structures. The set contained 1736 protein structures, of
which 879 were single proteins and 857 were single chains in
multisubunit proteins. Of these analyzed structures, 449 (26%)
were NMR structures and the rest were X-ray structures
(Supporting Information). In the latter cases, hydrogen atoms
at the amide andR positions were added using standard
algorithms.37 The N- and C-terminal residues were not included.
Sampling tensors were calculated for each structure for the
following bond vectors in the protein backbone: NH, NCR, and
CRC′ within the same residue and C′iNi+1 in the same peptide
plane (i + 1), as well as for the CRHR bonds. The distribution
of the representative points in the allowed plane is shown in
Figure 2. The statistics of the resulting distributions are presented
in Table 1.

The NH-vectors present the least uniformly distributed sets
(Figure 2a). This observation holds for both the NMR- and X-ray
derived structures. To further verify this result, the same
sampling tensor analysis was applied to C′O-vectors in the
representative set of proteins (Figure 2e). The results were very
similar to those for the NH vectors, which is expected since
the directions of the C′O and NH bonds belonging to the same
peptide plane are almost anti-parallel. The correlation coefficient
between the distributions of the fractions of the NH- and C′O-
vectors in the analyzed protein set was 0.98, 0.98, and 0.99 for
fx, fy, and fz values, respectively. For comparison, the corre-
sponding values of the correlation coefficient between C′O and

CRC′ were 0.43, 0.23, and 0.44. Because of their high correla-
tion, the inclusion of both NH and C′O-vectors in one data set

(35) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes in C; Cambridge University Press: New York, 1992.

(36) Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M.
Proteins1995, 23, 318-326.

(37) Weiner, P. K.; Kollman, P. A.J. Comput. Chem.1981,2, 287-
303.

εd ) 100x ∑
i)x,y,z

1

3(Di
act - Di

calc

Di
act )2

(20)

εa ) 100[1 -
Trace|Ract(φ′,θ′,ψ′)Rcalc(φ′,θ′,ψ′)T|

3 ] (21)

Figure 2. Sampling characteristics of the proteins represented in the
PDB survey: the distributions of the representing points in the allowed
plane, corresponding to sampling of the orientation space by (a) NH-,
(b) NCR-, (c) CRHR-, (d) CRC′-, (e) C′O-, and (f) C′iNi+1-vectors, in
the representative set of 1736 protein structures from Protein Data Base
(see text). Shown in panels (g), (h), and (i) are the corresponding
distributions for the grouped sets of vectors,{NH, CRHR}, {NCR, CRHR},
and{NH, CO}, respectively. Note that the generalized coordinatesη
andú characterize the rhombic and axial components of the orientational
distribution for a given set of vectors, eq 15. Every protein structure
from the representative set is represented on each panel by a single
dot, with the coordinates{η,ú} calculated for the specified set of vectors
according to eqs 1, 2, 14, 15. Note that the ordering of the principal
components of the sampling tensor was applied; therefore, all points
are folded into the minimal triangle, indicated in Figure 1c. The dashed
line is theΛmin ) 0.7 contour. The percentage of protein structures
with 0.7 < Λmin e 1 is (a) 85.7, (b) 99.8, (c) 97.8, (d) 100.0, (e) 87.6,
(f) 99.0, (g) 96.9, (h) 100, and (i) 86.9%.

Table 1. Statistics for the Representative Set of Protein Structuresa

generalized sampling
parameter,¥ quality factor,Λmin

bond vectors 68.3% level 90% level 68.3% level 90% level

NH <0.05 <0.13 >0.79 >0.65
NCR <0.01 <0.03 >0.90 >0.84
CRC′ <0.01 <0.02 >0.90 >0.85
C′O <0.05 <0.12 >0.80 >0.67
CRHR <0.02 <0.06 >0.85 >0.78
C′iNi+1 <0.01 <0.03 >0.90 >0.84
{NH, CRHR} <0.03 <0.06 >0.85 >0.76
{NH, C′iNi+1} <0.01 <0.02 >0.92 >0.87
{NH, C′O} <0.05 <0.13 >0.79 >0.66
{CRHR, NCR} <0.002 <0.004 >0.96 >0.94
all vectors <0.005 <0.01 >0.93 >0.89

a The generalized sampling parameter,¥, and the quality factor,Λ,
are assessed for each of the 1736 proteins in the representative PDB
set. The levels of¥ and Λ corresponding to 68.3 and 90% of the
analyzed protein structures for each type of bond vectors are reported.
These correspond to a set of 1186 or of 1563 proteins, respectively.
The list of PDB structures used is available in the Supporting
Information.
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does not improve the sampling (Figure 2i), unlike that for other
pairs of sets of vectors. This highly nonuniform distribution of
the NH and C′O bond orientations reflects the intrinsic feature
of a folded protein, where amide hydrogens and carbonyl
oxygens play essential roles in the hydrogen-bonding networks
of the protein fold. Hydrogen bonding requires specific spatial
and orientational arrangement in the N-H‚‚‚OdC atoms,38

resulting in orientational restrictions on the NH-bond. The
hydrogen-bonding patterns characteristic for the elements of the
secondary structure (R- and 310-helices, â-strands, see the
examples below) then result in the distribution of the NH bond
orientations being highly nonuniform. To illustrate this, we
applied the same analysis to model structures of anR-helix, a
310-helix, and aâ-strand, generated using INSIGHT (MSI).
Table 2 shows the values ofΩi, fi (i ) x,y,z) and ¥ for NH,
CRHR, and C′CR for these structures. In the case of anR-helix
the NH-vectors are highly ordered (and aligned almost parallel
to the helix axis) with¥ ) 0.84, whereas the CRHR-vectors are
more evenly distributed39 with ¥ ) 0.03. The use of the CRHR-
vectors would then provide a more uniform sampling of the
orientational space and thus of a resulting second-rank tensor.
The situation is similar in a 310-helix. In the case ofâ-strand,
however, both NH and CRHR are highly ordered, with¥ ) 0.8
and 0.95, respectively. Since these sets of vectors are almost
anti-parallel to each other, their union does not improve
sampling. However, including the CRC′-vectors in the set
reduces¥ to 0.30, indicating a more uniform sampling of the
vector space.

Grouping NH- and CRHR-vectors in proteins from the
representative database improves the sampling, compared to the
NH-only data6 (Table 1, Figure 2g). Interestingly, a much better
improvement is achieved by the union of NH- and C′iNi+1-
vectors. The optimal sampling results from a pairwise union
were obtained for{CRHR, NCR}-vectors (Figure 2h). In this last
case, none of the structures analyzed had theΛmin value below
0.85, and the corresponding¥ greater than 0.024.

Rotational Diffusion Tensor from 15N Relaxation Mea-
surements. To illustrate the approach described above, we
present a few examples which demonstrate its utility with respect

to the rotational diffusion tensor in proteins. In the paragraphs
below we discuss two specific examples, human ubiquitin and
the Pleckstrin homology (PH) domain of the humanâ-adrenergic
receptor kinase 1 (âARK1).7

Ubiquitin. The rotational diffusion tensor of ubiquitin has
principal elementsD| ) 4.43× 107 s-1 andD⊥) 3.82× 107

s-1, as determined by15N relaxation (excluding those residues
which exhibit large-amplitude motion as well those which are
subject to conformational exchange)5 (Ghose, Fushman, Cow-
burn, unpublished results). The principal axis frame of the
diffusion tensor is related to the PDB-frame (1ubq.pdb) by a
rotationR(48°,39°,0°). The sampling tensor (including the amide
backbone15NH bond vectors only) is characterized by principal
values given byΩz ) 0.3148, Ωy ) -0.0736, andΩx )
-0.2412 withfz ) 0.5432,fy ) 0.2843, andfx ) 0.1725. The
best sampled frame is related to the diffusion tensor frame by
a rotation given byR(0°,82°,7°), this implies that thex-axis of
the diffusion tensor plane is roughly parallel to thez-axis of
the sampling frame and is the best sampled, while thez-axis of
the diffusion tensor frame approximately corresponds to thex
axis of the sampling frame and is the least sampled. This is
confirmed by the values ofΦ which are{0.5361,0.2825,0.1814}.
The values of¥ andΛ are 0.1084 and 0.7721, respectively.

âARK PH Domain. A similar analysis of15N relaxation data
in the case of theâARK PH domain7 (PDB code 1bak.pdb),
which hasD| ) 2.19× 107 s-1 andD⊥) 1.72× 107 s-1, yields
a sampling tensor characterized byΩz ) 0.1090,Ωy ) 0.0374,
andΩx ) -0.1465 (fz ) 0.4060,fy ) 0.3583, andfx ) 0.2357).
The values of¥ and Λ are given by 0.0232 and 0.9256,
respectively, implying a near-optimal sampling of both the
orientation space and the diffusion tensor. Note that this protein
contains an extended (17 residues long) C-terminalR-helix. If
only theR-helical residues are considered, the sampling tensor
is characterized byΩz ) 0.8722,Ωy ) -0.4291, andΩx )
-0.4431 (fz ) 0.9148,fy ) 0.0473, andfx ) 0.0379) and the
generalized sampling parameter,¥, becomes 0.761 indicating
a grossly inadequate sampling of orientational space, that is,
the R-helix is insufficient to fully characterize the diffusion
tensor of the system. Similar problems are expected in the case
of helical bundles. To provide a better sampling of the
orientational space, an additional set of vectors is therefore
necessary. In the case of relaxation studies, this could be CRHR-
6 or CRC′-vectors. Although the C′CR- and C′N-vectors are more
difficult to study by NMR relaxation than NH-vectors, some
attempts have been made in this direction.39 For theâARK PH
domain considered here, a near optimal sampling of orientational
space results from the NH-vectors in theâ-strands. Analysis of
the sampling properties of theâ-strands yields the following
values for the principal elements of the sampling tensor:Ωz )
0.3353,Ωy ) -0.0244, andΩx ) -0.3109 (fz ) 0.5569,fy )
0.3171, andfx ) 0.1261) and the generalized sampling parameter
¥ ) 0.1398. Thus, the strands, as a substructural set, provide a
better sampling of orientational space than theR-helix does.
Further, by virtue of the PH domain fold, the NH-vectors in
the strands are oriented approximately orthogonal to the helix
axis, and therefore, a combination of the NH-vectors from the
two sets of structural elements lowers the value of¥ to the
almost optimal value of 0.0232.

Alignment Tensor from Residual Dipolar Coupling Mea-
surements.The theoretical approach presented above can be
applied to molecular systems oriented in dilute liquid-crystalline
media. For ubiquitin in the liquid-crystalline phase (5% w/v of
DMPC:DHPC in a 3:1 ratio at 304 K), the alignment tensor
has been found to be related to the PDB frame byR(42°,35°,

(38) Pauling, L.; Corey, R. B.J. Am. Chem. Soc.1950, 72, 5349.
(39) Chiarparin, E.; Pelupessy, P.; Ghose, R.; Bodenhausen, G.J. Am.

Chem. Soc.1999, 122, 1758-1761.

Table 2. Sampling Parameters in Idealized Secondary Structural
Elementsa

vector set Ωz Ωy Ωx fz fy fx ¥

â-Sheet
NH 0.89 -0.41 -0.48 0.93 0.06 0.01 0.80
CRHR 0.97 -0.48 -0.49 0.98 0.01 0.00 0.95
C′CR 0.48 0.01 -0.49 0.65 0.34 0.00 0.32
{NH, CRHR} 0.93 -0.45 -0.47 0.95 0.03 0.02 0.86
{NH, CRHR, C′CR} 0.53 -0.14 -0.39 0.69 0.24 0.07 0.30

R-helix
NH 0.91 -0.45 -0.46 0.94 0.03 0.03 0.84
CRHR 0.13 0.03 -0.17 0.42 0.36 0.22 0.03
C′CR 0.24 -0.10 -0.14 0.49 0.27 0.24 0.06
{NH, CRHR} 0.38 -0.17 -0.21 0.59 0.22 0.19 0.15
{NH, CRHR, C′CR} 0.33 -0.14 -0.19 0.55 0.24 0.21 0.11

310-helix
NH 0.87 -0.43 -0.44 0.91 0.04 0.04 0.76
CRHR 0.15 0.11 -0.26 0.43 0.41 0.16 0.07
C′CR 0.34 -0.16 -0.18 0.56 0.23 0.21 0.11
{NH, CRHR} 0.31 -0.14 -0.16 0.54 0.24 0.22 0.10
{NH, CRHR, C′CR} 0.31 -0.15 -0.17 0.54 0.24 0.22 0.09

a Each standard secondary structural element was built for 12 residues
of alanine using INSIGHT (MSI), and the structure was analyzed (see
text) for the individual axial sample components.

10646 J. Am. Chem. Soc., Vol. 122, No. 43, 2000 Fushman et al.



42°), with principal valuesAx ) 5.6,Ay ) -3.6 andAx ) -2.0.17

An analysis similar to that presented before yields values of
0.1084 and 0.7724 for¥ andΛ with thex-axis of the alignment
tensor being best sampled and thez-axis, the least, andΦ )
{0.4490,0.3763,0.1747}. For the backbone NH-vectors, the
sampling tensor frame is related to the alignment tensor frame
by R(0°,90°,142°). Given the fractions of NH-vectors aligned
along the three principal sampling axes in ubiquitin, eq 17 can
be used to analyze how well the alignment tensor is defined,
depending on the tensor orientation with respect to the sampling
frame (Figure 3). Note that the lowest possible quality factor
for this set of vectors isΛmin ) 0.69 (eq 19). The analysis,
assuming axial symmetry of the alignment tensor, indicates that
the highest quality factor can be obtained in the region ofθ )
40-60° for a large range inæ values. This implies that although
the alignment of ubiquitin in the DMPC:DHPC medium
corresponds to a rather high quality factor,Λ > 0.77, a change
in the orientation of the alignment tensor by roughly 40° would
result in a more optimal sampling for NH-vectors. Several
methods are available to bring about a change in the orientation
of the alignment tensor. These include doping the DMPC:DHPC
system with ions41 or the use of a different orienting medium,
for example, phages3 or purple membranes.27 Table 3 shows
the quality factors for ubiquitin in different liquid-crystalline
environments (also depicted in Figure 3). It can be seen that in
the case of ubiquitin the purple membrane system produces

consistently higher quality factors, and in most cases, they-axis
of the alignment tensor is the best-sampled axis (Table 3).
Inspection of Table 3 reveals that change in the quality factor
from 0.76 (in the DHPC:DMPC system) to 0.99 (in the purple
membrane system) is a result of a change of 69° in the
orientation of the alignment tensor. In most cases the expected
error in the quality factor due to the assumption of axial
symmetry is of the order of 1% (Table 3).

Relation between the Quality FactorΛ and the Accuracy
of the Diffusion Tensor Determination. How accurate are
tensor values for a particular value ofΛ? To answer this
question, the simulation approach outlined in the Theory section
was applied here to the determination of the rotational diffusion
tensor, as illustrated in Figure 4. Similar results are expected
for the accuracy of derivation of the alignment tensor from
residual dipolar couplings, because of the same functional form
as the quadratic form4,6 used here for the rotational diffusion
tensor.

Consider the simplest case of axially symmetric diffusion
tensor (D⊥ ) 3.0 × 107 s-1 and D| ) 4.5 × 107 s-1 which
corresponds toτc ) 4.76 ns and the anisotropy factorD|/
D⊥)1.5), and an axially symmetric sampling tensor. We
simulated multiple sets of vectors with different values of the
sampling parameter,¥, ranging from 0.94 to 0.03 with the
values offz and thefz/fx ratio in the range from 0.94 to 0.44 and
from 34.2 to 1.57, respectively. The various distributions were
generated by starting with unit vectors equally partitioned
between three cones of semi-angle 10°, 14° and 18° (with the
cone axis aligned along thez-axis). For each successive step,
an additional cone of semi-angle 4° greater than the largest semi-
angle for the preceding distribution was added and the vectors
equally partitioned between the cones. This procedure was
continued until a cone semi-angle of 170° was reached. The
total number of vectors varied from 195 to 216 in the various
distributions. An axially symmetric distribution of vector
orientations for each cone was achieved by assigning uniformly
distributed values of the azimuthal angle, equi-partitioned in
the range 0°-360°. For a completely anisotropic distribution
of the vectors, the azimuthal angle was restricted to the 0-220°
range. Synthetic relaxation data (T1, T2 and NOE) were
generated for the above values of the diffusion tensor elements
and of¥. The diffusion tensor was calculated from the relaxation
data (seeDerived Tensor Accuracy as a Function ofΛ in

(40) Engelke, J.; Ruterjans, H.J. Biomol. NMR1995, 5, 173-182;
Cordier, F.; Brutcher, B.; Marion, D.J. Biomol. NMR1996, 7, 163-168;
Zheng, L.; Fischer, M.; Zuiderweg, E.J. Biomol. NMR1996, 7, 157-162;
Dayie, K. T.; Wagner, G.J. Am. Chem. Soc.1997, 119, 7797-7806;
Engelke, J.; Ruterjans, H.J. Biomol. NMR1997, 9, 63-78; Allard, P.; Härd,
T. J. Magn. Reson.1997, 126, 48-57; Ghose, R.; Huang, K.; Prestegard,
J. H. J. Magn. Reson.1998, 135, 487-499;.Carlomagno, T.; Maurer, M.;
Hennig, M.; Griesinger, C.J. Am.Chem. Soc.2000, 122, 5105-5113.

(41) Ramirez, B. E.; Bax, A.J. Am. Chem. Soc.1998, 120, 9106-9107.

Table 3. Sampling Characteristics of the Alignment Tensor for Ubiquin in Different Liquid-Crystalline Media

mediumal
alignment tensor

{Ax, Ay, Az}b
PDB framec
{R,â,γ} [deg] Λd Λax

e
sampling framef

{æ,θ} [deg] {Φx, Φy, Φz}
DMPC:DHPC) 3:1 (304 K)2,17 5.60,-3.60,-2.00 42.0, 35.0, 42.0 0.77 0.76 3.8, 86.2 0.45, 0.38, 0.17
DMPC:DHPC) 3:1 (310 K)40 2.02, 3.29,-5.31 33.1, 41.3, 50.7 0.78 0.77 2.6, 80.9 0.44, 0.38, 0.18
DMPC:DHPC) 3:1 (313 K)27 3.01, 6.40,-9.41 38.8, 31.5, 37.9 0.78 0.76 2.5, 89.9 0.48, 0.35, 0.17
DMPC:DHPC:A) 3:1:0.1 (310 K)40 1.79, 2.90,-4.69 33.2, 41.4, 49.1 0.78 0.77 2.6, 80.8 0.45, 0.37, 0.18
DMPC:DHPC:C) 3:1:0.1 (310 K)40 1.13, 6.02,-7.15 30.9, 29.9, 20.3 0.85 0.76 1.1, 87.8 0.54, 0.29, 0.17
PM ) 1.0 (313 K)27 3.69, 4.70,-8.39 310.1, 128.6, 163.0 0.89 0.91 60.0, 76.8 0.22, 0.51, 0.27
PM ) 1.9 (313 K)27 6.07, 8.48,-14.55 309.8, 127.7, 160.7 0.88 0.91 60.7, 77.5 0.21, 0.51, 0.27
PM ) 1.9; N) 50 (313 K)27 4.91, 6.44,-11.35 310.3, 129.1, 162.3 0.89 0.91 59.6, 76.5 0.22, 0.51, 0.27
PM ) 1.9; N) 50 (288 K)27 4.08, 5.52,-9.61 315.2, 128.3, 149.6 0.90 0.92 62.2, 73.5 0.20, 0.52, 0.28
PM ) 7.0; N 50 (313 K)27 8.61, 12.78,-21.38 322.4, 112.2, 20.0 0.95 0.95 80.0, 75.3 0.37, 0.33, 0.30
PM ) 12.0; N) 350 (313 K)27 1.60, 4.22,-5.82 330.8, 127.9, 47.5 0.96 0.99 67.8, 62.3 0.45, 0.22, 0.33

Figure 3. Dependence of the quality factor,Λ, on the orientation
(æ, θ) of the unique axis of the alignment tensor with respect to the
sampling tensor frame for ubiquitin. The anglesæ andθ correspond to
the azimuthal and polar angles, respectively. The contour lines represent
various levels ofΛ calculated using eq 10. An axially symmetric
alignment tensor has been assumed. Only the core residues of ubiquitin
have been included in the calculation of the sampling tensor. Also
shown are the orientations of the alignment tensor experimentally
observed in the DHPC:DMPC system (squares),2,17,27,40doped DHPC:
DMPC system (circles)40 and the purple membrane system (triangles).27
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Theory section). The spread in the values characterizing the
diffusion tensor was determined from 1000 Monte Carlo steps
using the random error in the relaxation data. Figure 4 parts a

and b depict the errors in the principal elements (εd) and the
orientation (εa) of the diffusion tensor in the case where the
sampling tensor was taken to be axially symmetric and has its
unique axis orthogonal to the unique axis of the diffusion tensor.
The results indicate that although the inaccuracy in the diffusion
tensor determination is high for small values of the quality
factor, it becomes reasonably small (bothεd andεa fall below
5%) forΛ > 0.7. Similar trends were observed for a completely
anisotropic diffusion tensor (Dx ) 2.5 × 107 s-1, Dy ) 3.5 ×
107 s-1 andDz ) 4.5 × 107 s-1) and a completely anisotropic
sampling tensor (Figure 4 parts c and d) (the principal axis
frames of the two tensors are assumed to be co-incident),
although the magnitude of the errors can be larger than in the
axially symmetric case. Although the details of the relationship
of Λ with εd andεa are complex in the general case, and depend
on the nature of the distribution, the diffusion tensor and the
relative orientation of the two tensors, extensive simulations
show that the errors are expected to be within experimental
error42 for values ofΛ greater than 0.7. In all of the cases we
looked at, this corresponded to a¥ < 0.25.

Possible Limitations of the Quality Factor Approach.The
quality factor introduced here might not be an adequate estimator
of the accuracy of tensor determination in a particular case of
an axially symmetricD-tensor, if the unique axis of the tensor
is oriented at the magic angle with respect to all three principal
sampling axes. The theoretical quality factor predicted from eq
12 is then 1 and is independent of the actual distribution of
vectors along the principal sampling axes.32 The “magic angle”
orientation is particularly troublesome for determination of any
axially symmetric rank-2 tensor, which in this case reduces to
a single value. Therefore, it is important to understand the
limitations of the quality factorΛ as an accurate estimator of
the errors in tensor determination in this particular case.

A particular case that deserves consideration is when both
theD-tensor and the sampling tensor are axially symmetric with
their unique axes oriented at the magic angle (54.7°) to each
other. Since selection of thex- andy-axes of the sampling tensor
is then arbitrary, they can always be selected (e.g.,æ ) 45°) so
that the unique axis of theD-tensor makes the magic angle to
all three axes of theΩ tensor. To understand the relationship
between the sampling parameters and the accuracy of tensor
determination in this particular case, we also performed simula-
tion of the rotational diffusion tensor. As indicated by the results
of our simulations shown in Figure 4e, the errors in tensor
determination do not correlate well with the quality factors
determined from the calculated rotational diffusion tensor
(Figure 4e). In particular, the errors remain large even for the
estimated quality factor close to 1. Thus the quality factor
becomes a less accurate estimator of the errors in tensor
determination in this special case. However, even in this
particular case the errors in tensor determination drop to their
limiting values (within the “experimental” errors) for¥ < 0.25
(Figure 4f). Thus, the generalized sampling parameter¥ remains
an accurate estimator of the expected errors of the diffusion
tensor. As follows from these simulations, a second rank tensor
quantity, such as the rotational diffusion tensor, can be ac-
curately determined for vector distributions with values of¥ <

(42) The level of “experimental” error inεd and εa was obtained as
follows. Relaxation data (T1, T2, and NOE) were simulated for an uniformly
distributed set of 1,000,000 unit vectors. The influence of the measurement
errors on the diffusion tensor calculated from these relaxation data was
estimated using 1000 Monte Carlo simulations utilizing the 2% random
error (as in all other simulations, see Theory) added to the synthetic
relaxation data. The uncertainty in theεd andεa values obtained from the
resulting distributions of the principal values and orientations of the diffusion
tensor, is what we term “experimental error”.

Figure 4. Illustration of the robustness and the complexity of variations
in the derived values of the rotational diffusion tensor. Panels a-d
illustrate that the percentile errors of magnitude (εd) and orientation
(εa) of the tensor are small for anyΛ > 0.7 for the simulation described
in Theory. The variation in the magnitude of the errors and their
distribution between the axially symmetric (a, b) and fully anisotropic
(c, d) cases illustrate the complex variability of the error distribution
in different models. Data shown in panels a and b were derived for an
axially symmetric sampling tensor and an axially symmetric diffusion
tensor (D⊥ ) 3.0 × 107 s-1 andD| ) 4.5 × 107 s-1) with the unique
axes of the two tensors orthogonal to each other. The corresponding
cases for a fully anisotropic sampling tensorΩ and a fully anisotropic
diffusion tensor (Dx ) 2.5× 107 s-1, Dy ) 3.5× 107 s-1 andDz ) 4.5
× 107 s-1) are depicted in panels c and d. The variation ofεd with Λ
(panel e) and¥ (panel f) was derived for axially symmetric sampling
and diffusion tensors (same as Figure 4a,b) with the unique axes of
the two tensors at an angle of 54.7° with respect to each other. In this
particular case,Λ becomes a less accurate estimator of the quality of
the tensor determination, while the observed errors in the diffusion
tensor still correlate well with the generalized sampling parameter¥
(see text). The errors in the diffusion tensor were calculated for
computer-simulated relaxation data as described in the text (eqs 20-
21). The total number of data points was 38 000 (a-d) and 19 000
(e-f). For each of the 38 distributions, there were 1000 and 500 Monte
Carlo cases, respectively. For presentation purposes, the data were
distributed between 50 bins of equal width covering the observed range
of Λ values. Shown are the total ranges ofεd or εa values (thin vertical
lines), the range from the first to the third quartile (open bars), and the
average value (solid circles) for each bin. Also indicated with bar
diagrams on top of each panel is the number of data points in each bin
(in percent of the total number).
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0.25. Note that these values of¥ correspond to relatively good
orientational sampling, as the maximum available anisotropy
of the sampling tensor at¥ ) 0.25 isú ) 0.25.

The example considered here is a particular case related to
the magic angle orientation of the two tensors. For any other
orientation and/or in the general case of the anisotropicD-tensor,
the quality factor treatment introduced here is valid.

Practical Guidelines for the Optimal Design of Experi-
ments.The theory developed here makes it possible (a) to assess
the quality of a second-rank tensor determined using orienta-
tional dependence of physical properties as, for example,
rotational diffusion or alignment tensors, and (b) to predict the
likely limitations of the vector set available for these studies
prior to actual experimental measurements. This permits opti-
mization of the experimental design, to improve accuracy. As
follows from the discussion above, each set of interatomic
vectors can be represented by a point on the allowed plane
(Figure 1). Depending on the location of the representing point
with respect to the origin, the lower-bound (“worst-case”)
estimate of the level of accuracy (quality factorΛ) could be
performed using eqs 17-19, without prior knowledge of the
orientation of the tensor to be determined. A further refinement
is then possible given additional information regarding tensor
magnitude and orientation. A simple rule follows from the theory
developed here: the closer the representing point is to the origin
(Figures 1-2) (i.e., the closer the distribution of the vectors is
to a uniform distribution), the better the sampling of the tensor
and the higher the accuracy of its determination. The experi-
menter may then either select a particular subset of the available
vectors or include additional measurements (e.g., CRHR- or NCR-
vectors, in addition to NH-vectors) to ensure the desired level
of tensor sampling, represented by the quality factor. Note also
that the generalized sampling parameter¥, eqs 4, 16, provides
a quantitative measure of the degree to which a particular set
of vectors could be safely considered as uniformly distributed,
essential for approaches based on this assumption.13 These

considerations address issues related to the intrinsic properties
of a finite set of vectors available in a real experiment in real
molecular systems and are unrelated to the issue of measurement
precision and accuracy.

Conclusions

We have developed a quantitative approach to determine (1)
how well interatomic vectors in a particular protein structure
sample orientation space, (2) how well this particular distribution
of bond vectors samples the various components of a second-
rank tensor, and (3) the ability of this distribution of bond vectors
to completely characterize the tensor. This approach is in general
applicable to any second-rank tensor property whose determi-
nation relies on the sampling of the angular space by the
structure. It allows optimization of the experimental design to
improve accuracy. The utility of the proposed approach is
demonstrated here for the overall rotational diffusion and
alignment tensors. The analysis of a set of 1736 protein
structures representing a variety of known protein folds,
provided statistical analysis and revealed characteristic patterns
in the orientational sampling by various bonds in a protein. It
should be mentioned here that this method is not applicable to
properties which are dependent on local structure such as, for
example, the chemical shift anisotropy of a given nucleus. In
this paper, the approach has been illustrated with protein
structures, but it is equally applicable to other molecules,
including nucleic acids, and carbohydrates.
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